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From Molecular Connectivity Indices to Semiempirical Connectivity Terms:
Recent Trends in Graph Theoretical Descriptors
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[. Introduction

A. Background on Molecular Connectivity

Many structure—property studies use graph theo-
retical indices that are based on the topological
properties of a molecule viewed as a graph. The main
goal of topology is always toward the general, i.e.,
toward relations and theorems that apply to any
space, without reference to measurements or any
kind of metrics. Thus, atoms embedded in a graph
will no longer be Euclidean points but any unspeci-
fied thing to which we can apply these relationships
meaningfully. This kind of generalization is natural
to mathematics; six pairs are a dozen, whether
loaves, or atoms, or days. A graph, in a topological
context becomes, thus, the abstracted essence of the
properties of traversing and joining, and conversely,
a molecule is a concrete manifestation of an ab-
stracted graph where the Euclidean metric together
with the notions of congruence (see Glossary) and
similarity (see Glossary) go by the board. A graph G
can be defined as a set of V vertexes with a set of E
edges that connect these vertexes, i.e., G = (V,E).
Thus, a graph is determined by the set of vertexes
and by the set of edges joining the vertexes and not
by the particular appearance of the configuration. A
chemical graph is a graph where atoms and bonds
are represented by vertexes and edges, respectively.
Clearly, double bonds or lone-pair electrons cannot
be fitted by a graph; for this reason, pseudographs
are also used to represent organic molecules. A
pseudograph G = (V,E) is the most general type of
graph, since it may contain multiple edges between
pairs of vertexes and loops, which are edges from a
vertex to itself.r Every graph is, thus, a pseudograph,
but not every pseudograph is a simple graph. Some
mathematicians, in fact, reserve the term ‘simple
graph’ for a graph with no multiple edges and loops.
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An important characteristic of graphs and pseudo-
graphs is the degrees of their vertexes, i.e., the
number of edges incident with each vertex, where
loops are to be considered self-incident edges. The
degree of a vertex suggests one of the chemical
concepts of valence, and in fact, in chemical graph
theory it is often used with this meaning (see refs
2—8 and references therein). However, while the
degree of a vertex in a simple chemical graph denotes
the connections of the chemical vertexes, the degree
of a vertex in a chemical pseudograph is directly
related to the chemical concept of valence, with loops
and multiple edges simulating lone pairs and x
bonds, respectively. From what has been said, it is
evident that organic molecules are well suited to be
represented by chemical graph or pseudographs
whose mathematical properties can be used in QSAR/
QSPR studies. The most widely considered chemical
graphs and pseudographs are hydrogen-suppressed
graphs, and from now on, graphs and pseudographs
will be assumed to be hydrogen-suppressed graphs
and pseudographs. In Figures 1 and 2 are reported
the molecules of the amino acid alanine and of the
base cytosine and their corresponding hydrogen-
suppressed graph (left) and pseudograph (right),
respectively.

i
~—I—I—q CH;— C— C—OH
I

NH,

Figure 1. Molecule of the amino acid Ala and its corre-
sponding hydrogen-suppressed graph (left) and pseudograph
(right).
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Figure 2. Molecule of the base cytosine and its corre-
sponding hydrogen-suppressed graph (left) and pseudograph
(right).

A common way to represent chemical graphs is to
use adjacency matrixes.® An adjacency matrix of a
graph isan x n 0,1 matrix with 1 as its (i,j)th entry
when vertex v; and vertex v; are connected and 0 as
its (i,j)th entry when they are not connected, i.e., ajj
= 1 if {vi, vj} is an edge of the graph and a; = 0
otherwise. The symmetric square 0,1 matrix of eq 1
is the connection matrix representing the hydrogen-
suppressed chemical graph of the amino acid Ala of
Figure 1. This and the matrix of eq 2 were built using
the following ordering of the atoms: C,, Cq, N, O (of
the OH group), O (of the C=0 group), and C (of the
CHjs group). As self-adjacencies are not allowed in
normal chemical graphs, all entries along the main
diagonal are zero.

010110
101001
010000
100000 (1)
100000
010000

The symmetric square adjacency matrix for the
hydrogen-suppressed chemical pseudograph of Ala is
given by matrix of eq 2

110110
101001
012000
100400 (2)
100050
010000

Relative to matrix 1, some entries along the diagonal
are seen to be different from zero, since in pseudo-
graphs self-connections (loops), which mimic the
presence of lone-pair electrons, contribute twice to
the degree of a vertex and multiple connections,
which mimic the presence of x bonds, contribute once
for each multiplicity to the degree of a vertex.® Thus,
the sinlge & bond of the carboxyl carbon of the C=0
group (first row) contributes a(1,1) = 1 in the
diagonal entry; the nitrogen of the amino group with
a lone-pair electron or self-connection has entry a(3,3)
= 2; the oxygen of the C—OH group with its two lone
pairs has entry a(4,4) = 4; the oxygen of the C=0
group with two lone pairs and a « bond has entry
a(5,5) = 5. There are other ways to write the
adjacency matrix of a pseudograph,® but the one
given is the most useful for computational purposes,
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as matrix 1 can be obtained from matrix 2 with an
algorithm that zeros the diagonal.

The vertex degree or valence ¢; and the pseudover-
tex degree or valence ¢Y; of an atom can now be
computed from matrix 2 in the following way: 0; is
equal to the sum of the elements in row i (or column
i) in the diagonal-suppressed adjacency matrix (or
equal to the sum of the elements in adjacency matrix
1); ¢Vj is the sum of all the elements of row i of matrix
2. It can be shown that the number of nonzero entries
in matrixes 1 and 2 is twice the number of bonds or
connections in the corresponding graph and pseudo-
graph. Thus, let G = (V,E) be a graph (pseudograph)
with E edges and V vertexes, then 2e = Z6; (2e = Z¢V;
in pseudographs) where e is the number of edges.
Since an edge is incident with exactly two vertexes,
it contributes twice to the sum of the degrees of the
vertexes. This result is sometimes referred to as
hand-shaking theorem?! because of the analogy be-
tween an edge having two end points and a hand-
shake involving two hands. Such a peculiarity of
graphs is encoded in the symmetric form of matrixes
1 and 2. For pairs of enantiomers such as in amino
acids or sugars, the given sum can be seen either as
the sum of the vertex degrees of the L form or as the
sum of the vertex degrees of the b form, i.e., 2e, =
2e_as e_= ep. In fact, invariants derived from ¢; and
oY numbers are unable to distinguish between b and
L forms of enantiomeric pairs as 6, = d,, and ¢V, =
0Vs. We will come back to this topic and discuss some
consequences of this theorem later on. From numbers
0 and ¢Y, following certain rules laid down by the
molecular connectivity theory, it is possible to derive
a whole set of molecular connectivity (MC) indices.
For an amino acid like Ala, e.g., it is possible to derive
up to 20 MC indices.

B. Challenges of Molecular Connectivity

The type of quantitative structure—property rela-
tionships (QSPR) in which we are interested is based
on molecular connectivity invariants (MCI). Thus, a
molecular connectivity modeling of properties is that
modeling which successfully relates these invariants
or indices to specific properties of a class of com-
pounds; the more the properties and classes of
molecules we are able to model with molecular
connectivity indices, the more these indices assume
the character of property meters. This result makes
us confident that our conclusions with respect to
these invariants are quite general and that the
equation P = f(MCI) is valid for all properties which
occur in the world. We need this generalization so
that we can use it for the prediction of properties of
molecules which have not yet been determined. We
cannot, of course, be absolutely certain that every
prediction will be correct, but confidence in gener-
alization grows with every successful prediction.

A great deal of successful QSPR and QSAR studies
are based on hydrogen-suppressed chemical graphs
for which graph theoretical indices, the molecular
connectivity y indices, have been defined and further
refined for the last 20 years® 2° into a self-consistent
theoretical frame known as the molecular connectiv-
ity theory (MCT) or molecular connectivity model
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(MCM). Throughout these years, interesting contri-
butions to this theory have been made by many
groups scattered around the world?°52 (for a detailed
bibliography before 1986, see references in ref 3). The
references cited are certainly not exhaustive but
nevertheless indicate the rich development under-
gone by molecular connectivity and related topologi-
cal concepts. Reference 8 is an interesting contribu-
tion about the story of chemical graph theory. The
main challenge of MC modeling can be phrased into
the following way: All predictions can be reached
using nothing more than pencil and paper.>* Obvi-
ously, more than pencil and paper are needed to
model physicochemical properties of compounds, but
what these words are stressing is the fact that the
modeling of properties can be done by the aid of a
few elementary, direct, and easily understandable
mathematical tools.

C. Some Recent Trends in Molecular Connectivity
Modeling

With the recent introduction of four new molecular
connectivity indices, the sum-delta, the valence sum-
delta,’® and the total and valence total®® indices, it
has been possible to define a medium-sized set of
eight molecular connectivity indices {y} which seems
able to offer both a satisfactory model of many
physicochemical properties of many classes of com-
pounds and reduce the dimension of the otherwise
severe combinatorial problem required to derive
optimal linear combinations of molecular connectivity
indices, LCCI.%5~7* With this medium-sized set of
molecular connectivity indices it has been possible
to model the properties of natural amino acids, purine
and pyrimidine bases, alkanes, organic phospho-
derivatives, unsaturated organic compounds, inor-
ganic salts, mixed classes of amino acids plus pep-
tides, amino acids plus inorganic salts, amino acids
plus purine and pyrimidine bases, and so on.5-%* The
modeled properties include the pH at the isoelectric
point, the longitudinal relaxation time, the side-chain
molecular volume, the specific rotation, the solubility,
the crystalline density, the melting points, the motor
octane number, the retention index for paper chro-
matography, enthalpy values and hydration proper-
ties, etc. It was also attempted to define an index for
the cis/trans isomerism in unsaturated compounds.>®

Subsequently, the need to model with fewer indices
and to extend the applicability of the method to
highly heterogeneous classes of compounds has led
to the development of nonlinear higher-level molec-
ular connectivity terms, X = f(y), and semiempirical
terms, X = f(y,P'exp), Where P'ey, is an experimental
property different from the modeled property.65-70
Further, it has been seen that D and DV indices,
which can be derived from the hand-shaking theorem
(see section A), led to the development of the concept
of graph mass, a concept with its own identity and
is not redundant with the concept of molar mass.”

Another interesting procedure of notable impor-
tance in molecular connectivity modeling is the
orthogonalization procedure to derive from normal
MCls the corresponding orthogonal molecular con-
nectivity indices. It is a rather general procedure
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which allows the construction of stable relationships,
the derivation of dominant descriptors and enhance-
ment of reliability of the relationship.?~2° Using this
approach, ordered orthogonalized connectivity bases
have been proposed and successfully tested with
amino acids.** The recent introduction of the in-
verse imaging procedure, which consists of build-
ing molecules from modeling equations, allowed the
path from graph to the modeling equation to be
inverted.36-3%7

[l. Mathematical Tools and Algorithms

A. The Molecular Connectivity Concept

1. The Molecular Connectivity Index

The term molecular connectivity was adopted by
Kier and Hall in 1975%1 in connection with a
mathematical algorithm proposed by Randic® 25
years ago. This algorithm can be considered the first
concept of the MC theory. It has long been known
that branched-chain alcohols and hydrocarbons gen-
erally have lower boiling points and higher solubility
than the corresponding straight-chain isomers. Ran-
di¢ not only suggested a simple computational method
for correlating a physicochemical data with such
topological characteristics as branching, but the
proposed method did show a quantitative character
that up to then had failed in previous works, like,
e.g., in the works of Hosoyea and Smolenski.”"3
Randit’s branching index, which is generally known
as the path-one molecular connectivity index or the
first-order molecular connectivity index (Yy), was
defined as y = Z(m-n)™°5 where the summation
includes one term for each edge in the hydrogen-
suppressed chemical graph and the variables m and
n are the valencies of the adjacent points joined by
each edge.

Let us show in few words how Randi¢ did attack
the problem to find, by the aid of topological consid-
erations, a numerical solution for the inequalities in
the boiling points of alkane isomers. Consider the five
hexane isomers n-hexane (6), 3M-pentane (3M5), 2M-
pentane (2M5), 2,3MM-butane (23MM4), and 2,2MM-
butane (22MM4) and the inequalities that follow
their boiling points:

2(1,2) + 3(2,2) > 2(1,2) + (1,3) + 2(2,3) > (1,2) +
2(1,3) + (2,2) + (2,3) > 4(1,3) + (3,3) > (1,2) +
3(1,4) + (2,4)

Here i(m,n) represent the number i of bond type
where the end vertexes have valences m and n,
respectively. Randit¢ solved the problem to find nu-
merical values for (m,n) that would represent a
solution of given inequalities, with the suggestion
that the contribution for bond type (m,n) is 1/+/(m-n),
which, when summed over all bonds, defined the
connectivity index. The connectivity index values for
the given hexane isomers were thus found to be
2.9142 > 2.8081 > 2.7701 > 2.6427 > 2.5607, i.e.,
2(6) > x(3M5) > %(2M5) > ¥(23MM4) > ¥(22MM4).
It is interesting to point out how the connectivity
indices of the different isomers parallel the boiling
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point of the five alkanes. Randic's original paper also
alludes to the concept of extended connectivity, which
acknowledges the presence of more distant neighbors.
The natural extension of this view to define ad-
ditional indices for subgraphs corresponding to paths
with lengths greater than one (including the zeroth-
order y index), to clusters, to path—clusters, to cycles,
and to define indices for pseudographs which are able
to mimic the presence of multiple bonds and lone-
pair electrons was undertaken by Kier and Hall.10-16
Thus, e.g., the second-order molecular connectivity
index, %y, stretches over three linear-contiguous ver-
texes, e—e—e, and the third-order molecular con-
nectivity index, 3y, stretches over four linear-contigu-
ous vertexes, i.e., e—e—e—e, and are defined as
>(mnp)~% and Z(mnpq) %, respectively. The summa-
tion here is over the overall number of subgraphs into
which the graph can be partitioned. The third- and
fourth-order cluster and path—cluster indices stretch

instead over | and |
tively, and so on. In this way, it can easily be
understood that even for a small molecule like Ala,
up to 20 y and y¥ indices can be defined, giving rise
to a huge combinatorial problem as we shall see later
on. Nearly in the same period Balaban proposed an
anlogous index to %y but based on the distance matrix
(see Glossary) of a graph, the so-called J index.”™

Concerning the first-order molecular connectivity
index, it has recently been demonstrated*® that a
relationship exists between molecular orbital theory
and molecular topology and that the y index repro-
duces the values obtained for the & electronic ener-
gies as well as for the resonance energies calculated
with the HMO method for conjugated alternant
hydrocarbons. This parallelism between molecular
connectivity and Huckel theory of conjugated mol-
ecules is quite interesting as both are based on the
topology of a molecular framework ( network only
for HMO) rather than its geometry; further, they
share the same simplicity and limited computational
effort.

subgraphs, respec-

2. The Medium-Sized Set of Molecular Connectivity
Indices

In the remainder of this article we will mainly be
interested in a limited set of molecular 'y and valence
iy connectivity indices of hydrogen-suppressed chemi-
cal graphs that can easily be computed by the aid of
adjacency matrixes 1 and 2. This medium-sized set
of eight molecular connectivity indices has been
systematically and successfully used during the past
years both in deriving powerful linear combinations
and even more powerful molecular connectivity terms,
where powerful means the good quality of the achieved
modeling. As already explained, the basic parameter
for these and other molecular connectivity indices is
the connectivity degree or valence of a vertex 6 in a
molecular chemical graph and ¢V in a pseudograph.
From the first row of matrixes 1 and 2, respectively,
it is possible, for example, to obtain for the carboxyl
carbon of Ala 6(C,) = 3 and ¢Y(C,) = 4. For higher
row atoms, e.g., for the third and further quantum
level atoms, like Na, Mg, CI, Br, I, P, S,..., the delta
values, ¢, are computed from their chemical graphs
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while the ¢¥ values are computed by the aid of eq 3,
as, in this case, it has been proposed to take into
account the core electrons also.'® Clearly, here the
concept of pseudograph is of no help.

=2z -2"-1) 3)

Here, Z is the atomic number and ZV is the number
of valence electrons. Thus, e.g., for the following
atoms, the following ¢V values are normally used

LiNa K Rb Cs BeMg Ca Sr Ba Cu CI Br | S
1 1/9 1/17 1/35 1/53 2 2/9 2/17 2/35 2/53 2/26 7/9 7/27 7/45 5/9

For the amino acid Cys, a 6Y(S) = 0.56 has been
chosen, while for the organophosporous compounds
a 0Y(P) = 2.22 has been chosen.’®

The eight indices, which will be used throughout
this review, are now presented and succinctly dis-
cussed. The zeroth- and first-order molecular con-
nectivity indices!?

O =36y °° (4)
and
Y = 3(0,0p) °° (5)

Their dimensions are [67°5] and [071], respectively.
The sum in eqgs 4 and 5 run over all N vertexes
(atoms) and all edges (o bonds) of the molecular
graph, respectively. Replacing, in these and following
equations, 0 with valence 6V of the corresponding
pseudograph, we obtain the corresponding valence
molecular connectivity indices, yY, where the sum is
to be taken again over all vertexes and over all single
edges, i.e., multiple edges are taken only once.

In 1988 Needham et al.?® introduced a quite useful
molecular connectivity index, the total structure
molecular connectivity index of a chemical graph over
all N vertexes, yx,

%e = (0105....0,) °° (6)

with dimension [67N?]. Replacing 6 with &Y, the
corresponding total valence molecular connectivity
index, y¢, for the pseudograph is retrieved.

Recently, the following sum-delta (and valence
sum-delta, DV) molecular connectivity index has been
introduced,® where the sum runs over the vertexes
of the chemical graph (or pseudograph)

D = 30, )

Indices D and DV are strictly related to the hand-
shaking theorem, which was discussed in a preceding
section. These eight indices, the y and v indices,
build the following medium-sized set of molecular
connectivity indices

{1} ={D, DY, % %", 0. "%", ne 2} (8)

B. The Graph Mass Index

The D and DV indices, which have as their basis
the hand-shaking theorem, a theorem which concerns
a property of the graph or pseudograph as a whole
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entity, have recently been called graph and pseudo-
graph mass indices, respectively.”? This, does not
mean that they are good descriptors of the molar M
mass of molecules. On the contrary, it has been
demonstrated that they are autonomous indices
which can sometimes and only sometimes offer a good
description of the molar masses of certain classes of
molecules. Other indices are more effective descrip-
tors of the molar mass of organic and nonorganic
compounds. In fact, the simulation of the molar mass
of many classes of compounds has shown that nor-
mally % and 'y are the best descriptors for M, while
graph, D, and pseudograph, DY, mass descriptors, are
normally poor descriptors of M. It seems that as soon
as the graph and pseudograph do not superpose
anymore, as it does in alkanes, both D and DV
acquire an autonomous descriptive dimension, with
minimal superposition with M. Theoretical graph
mass parameters D and DV cannot, thus, be ex-
changed with M or be considered redundant with it.

C. Dimensionality Problem

Graphs have been considered two-dimensional (2-
D) objects”™ 78 even if very important information on
3-D structure is implicit in the set of connections
contained in the chemical graph and encoded in the
molecular connectivity indices. In fact, graphs con-
taining only —CH,— and graphs containing quater-
nary, >C<, and tertiary, —CH<, carbons are evi-
dently designing a cyclic molecule and a molecule
with consistent steric crowding, respectively. These
differences, as well as differences in bonding (see
pseudographs), are detected by the different molec-
ular connectivity indices. However, even if graphs
encode some 3-D information implicitly, it is not
unworthy to elucidate again what a graph is. Fun-
damentally, the term graph refers to a mathematical
object that represents the structure of the various
interconnections of a molecule. Being a collection
consisting of two sets, the set of V vertexes and the
set of E edges that connect these vertexes, it is
essentially a statement of objects and their relations.
A graph is only determined by the set of vertexes and
by the set of edges joining these vertexes, and it is
not a Cartesian representation of a structure; thus,
the spatial dimension of a graph is a quite elusive
entity, as dimension in graph theory does not have
the same meaning as the concept of dimension in
physics. In light of these considerations, the claim
that molecular graphs do not encode 3-D structures
has a minor value. A more rigorous definition of
graph states that the term graph and one-dimen-
sional complex are synonymous and that they are a
set of zero-dimensional objects or vertexes and a set
of one-dimensional objects or connections together
with a rule which assigns to each connection two
distinct vertexes.!

D. The Cis/Trans Isomerism

The algorithm to encode this isomerism,>® which
normal graph theory does not allow to be encoded, is
based on the first-order 'y index. The procedure to
derive it starts by considering the different hexatriene
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Figure 3. Six conformers of hexatrienes.
conformational isomers of Figure 3 as embedded on
an idealized graphite grid as already suggested for
three-dimensional structures.”8 Now, we notice that
if we increase, in chemical graphs 2—6, the 6 values
of the two cis points by 1, connecting them by an
edge, they can form four-membered rings and, pre-
cisely, one four-membered ring for graphs 2 and 3,
two for graphs 4 and 5, and three for graph 6. The
six-membered rings of the graphite grid can be
thought of as stable embedding forms. The newly
formed rings, a sort of virtual rings with the raised
0" valence of the newly connected cis points, can be
considered virtual ring fragments. The ¢ vector of the
virtual ring which includes the connected cis points
can be used to define the following cis "y, connectivity

index, where c¢ stands for cis and (here) the embedded
ring form has n =4

an = 2(6"162“'6%)76/n (9)

Exponent 6 is contributed by the number of edges of
the embedding rings of the graphite grid. The num-
bering at the different delta values denotes the
different vertexes of the virtual ring fragment, and
the limits of the summation are the number of four-
membered-ring fragments that can be formed inside
the embedding rings. If 6 = 6" = 2, eq 9 has a
constant solution for every n ("y. = 0.01563). This
new index, which is reminiscent of the "y, index of
Kier and Hall,*? (i) has no meaning for trans struc-
tures, where no cis points are present, and further-
more (ii) cannot encode branching. To short circuit
these limitations, a global molecular y.: connectivity
index has been defined in a way that its maximum
value should correspond to the all-trans isomer while
it decreases the more ‘cis-rich’ and the more branched
the chain gets; i.e., the new index should include the
characteristics of the 'y index, which decreases with
increasing branching, and of the "y, index, which
increases with increasing cis-rich compounds; it
should look like the index of eq 10

Yot =1 — ™ (10)

Here, n = 4, and y has been defined in the preceding
section. Then for all-trans graphs for which "y, = 0,
the new index simplifies into %y

Xet = 1% = Z(éiéj)_llz (11)
The given definition of y; allows us to encode not only

different cis and trans olefins, but also different types
of chemical graphs and pseudographs such as al-
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kanes and alkenes. The "y, index alone, instead, can
only be used among specific sets of olefins such as
the given trienes but is useless, for example, to
differentiate between cis-2-butene and cis-2-octene.
This new index, y., proved to be very useful in
modeling some physicochemical properties of olefins,
such as the boiling points, the refractive index, the
density, and the molar refractivity.>®

E. Linear Combination of Connectivity Indices
(LCCl)

The method of linear combination of connectivity
indices is a powerful tool used to model different
properties of different classes of compounds with no
recourse to empirical, quantum mechanical, or other
kind of ‘external’ parameters, which are in some cases
used in connection with y indices to improve the
modeling. The validity of this powerful method had
already been recognized and proved for the simula-
tion of properties of alcohols, alkanes, quaternary
salts, polyaromatic hydrocarbons, and octane iso-
mers.'38! This method starts with the choice of a set
of optimal molecular connectivity indices, among
which, through a combinatorial technique and fol-
lowing statistical criteria that will be introduced later
on, the best modeling indices are sorted out. The
rationale for the choice of only eight molecular
connectivity indices (see eq 8) is to keep under control
the combinatorial problem that arises in the choice
of the best modeling combination of y indices. Two
standard combinatorial techniques can be used for
the search of the best combination of indices belong-
ing to the {y} set:526567 the forward selection tech-
nique and the full combinatorial technique. The
forward selection technique, also know as the ‘greedy
algorithm’, is a sequential method for index selection
based on the notion that connectivity indices should
be inserted one at time until an optimal LCCI is
obtained. This method spans a subspace of the full
combinatorial space. The procedure is as follows: (a)
choose the best single y index, (b) then choose the
next best y index of the {y} set that further enhances
the description of the property, in the presence of the
previous index, (¢) and so on until the description
starts to worsen with the introduction of the next y
index of the set. One of the advantages of this
algorithm is that it gives an ordered list of descriptors
that can be used in deriving orthogonalized descrip-
tors. The more elaborate and precise full combina-
torial technique, instead, searches the full combina-
torial space spanned by the indices of the set to
extract the optimal LCCI. Experience has shown that
the first method offers an adequate alternative to the
more precise but more time-consuming full combi-
natorial method. A drawback of this second combi-
natorial algorithm results from the fact that in a
stepwise regression it produces results in which at
different successive steps, in addition to a new
descriptor, old descriptors can be altered and a
completely different combination of descriptors may
emerge.?? The difference in terms of searched com-
binations between the two combinatorial techniques
is shown in Table 1, where the overall number of
possible combinations for both procedures with grow-



Recent Trends in Graph Theoretical Descriptors

Table 1. Number of Possible Combinations for m
Indices with the Forward Selection (fs) and Full
Combinatorial (fc) Technique

m fs fc
2 3 3
3 6 7
4 10 15
5 15 31
6 21 63
7 28 127
8 36 255
9 45 511
10 55 1023
20 210 1048 575
25 325 33554 431
30 465 1073741823

ing number of indices is summarized. From this table
it can be seen that the complete combinatorial space
practically explodes with a growing number of de-
scriptors while the forward selection technique looks
quite tractable up to nearly 10 indices. It should be
added that 30 normal plus valence indices per
molecule (like Phe) is no extraordinary number of
indices, keeping in mind that C; g alkanes, which do
not have valence-type indices, can have up to 17
molecular connectivity indices per molecule.®® Thus,
our set of eight indices will give rise to 36 forward
selection combinations and 255 full combinations,
which should be searched to find the best LCCI, a
task that a normal PC or a programmable pocket
calculator can handle.

Assuming that the relationship between properties,
P, and molecular connectivity indices is linear, then
the modeling equation is given by the following dot
product modulus

P=|Cul 12)

Here, P is the calculated property, the row vector, C
= (Cp, Cov, Cos Covs C1, Cav, Ct, Crv, Cu), IS the vector of the
coefficients determined by a least-squares procedure,
and the column vector, y = (D, DY, %, %", Yv,%", xt
7Y, Up) is the vector of the connectivity descriptors.
The aforementioned selection techniques in choosing
the best descriptors will determine which coefficients,
Ck, of vector C are zero. The multivariate regression
can be regarded as a linear combination of connectiv-
ity indices where the constant term can be considered
to multiply the unitary index, Up = y° = 1. Even if P
is not always a linear function of y, it is nevertheless
a linear function of the cy coefficients. If y is a m'n
matrix (where, n = number of compounds), then P
is a column vector of the entire class of compounds.
The bars in eq 12 stand for the absolute value to get
rid of negative P values with no physical meaning
and simultaneously enhance the description of the
property. As y indices are dimensionless numbers
holding no unit, they are, strictly speaking, able to
describe only dimensionless parameters. To avoid
this pitfall, the scalar property P should be read as
P/P°, where P° has the same units as P but unitary
value, following a well-known algorithm of quantity
calculus which allows treatment of P/P° as a dimen-
sionless quantity.®*8 The reader should be reminded
that every time he reads P, P/P° is intended, even
with the legends of the figures.
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The different combinations of indices are controlled
and sorted by the aid of two statistical parameters:,
(i) the quality factor, Q = r/s, where r = correlation
coefficient and s = standard deviation of estimates,
and (ii) the variance F (Fischer) ratio, F = fr3/[(1 —
r)m], where f = number of degrees of freedom, f =n
— m — 1, m = number of variables, and n = number
of data points. For every optimal combination, r and
s will be given also. It should be noticed that Q and
F values have been derived with original calculated
r and s with five digits. The modeling was taken to
be optimal when Q reached a maximum together
with F, even if slightly nonoptimal F values have
normally been accepted. Instead, a significant de-
crease in F with the introduction of one additional
variable, with increasing Q, due to a decreasing s,
could mean that the new descriptor has endangered
the statistical quality of the combination, which
nevertheless can again improve with the ulterior
introduction of a more convincing descriptor. For
every index of a LCCI equation, the fractional utility
(i.e., the inverse of the fractional error), ux = |Cw/Sk|
as well as the average fractional utility W= Zu/m
will be given. The statistical parameter, uy, will allow
detection of the paradoxical situation of a LCCI with
a good predictive power but with a poor utility at the
level of some or all of its coefficients.*! This paradox
can, in part, be removed with the introduction of
orthogonal molecular connectivity indices. It should
be noticed that Q, r, and s values as well as [Widand
uk values, even if they seem redundant, offer a more
direct view of the statistical behavior of a modeling
and can also be used as a check for eventual printing
errors.

Sometimes some compounds have a property with
a negative value, such as the specific rotation, SR,
of some amino acids (see the SR column in Table
2). In this case the modeling equation loses its bars
as it must be able to model the negative value also.
Let us see, e.g., how the modeling equation should
be formulated for the specific rotations of amino
acids. In this case, eq 12 should be recast into the
more general form given by eq 13, as SR cannot only
assume negative values, but can also assume anti-
thetical values for the L- and p-forms.

P =ClnX (13)
with
C,=—-C, (14)

where U stands for the logical sign ‘or’. The automatic
extension of the modeling to the other form may be
regarded as a kind of pseudoexternal validation test
as the model is applied to the prediction of SR of a
set of amino acids which are similar to the training
set but are not involved in the development of the
model.

Particular care should be taken with multilinear
relations where even apparently small rounding
effects are magnified to consistent errors in predicted
values. Coefficients returned by the regression pro-
cedure should always be examined in a critical
manner and verified before using them in a predictive
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Table 2. Experimental Values of the Solubility, S, for 20 Amino Acids (AA, at 25 °C in units of g/kg of water), pH
at the Isoelectric Point, pl of 21 AA, Crystal Densities, CD, of 10 AA, Side-Chain Molecular Volume, V (in A3), of
18 AA, Specific Rotations in Angular Degrees, SR of 16 L-AA in Water (in parentheses, +1 °C, when T = 20 °C),
Unfrozen Water Content UWC (g of H,O/g of AA) of 8 AA, and Solubility, S (at the indicated T (°C), in units of

g/100 mL of water) of 23 Purines and Pyrimidines (PP)& 92

AA S pl CD v SRL UwWC PP@ S (T, °C)
Gly 251 5.97 1.601 36.3 7I8MTp 0.63 (20)
Ala 167 6 1.401 52.6 2.7 (22) 7B8MTp 0.45 (20)
Cys 5.07 71Tp 2.7 (20)
Ser 422 5.68 1.537 54.9 -6.83 0.48 7BTp 0.37 (30)
val 58 5.96 1.230 85.1 6.42 1BTb 0.56 (30)
Thr 97 5.60 71.2 28.4 (26) 0.72 7PTp 23.11 (30)
Met 56 5.74 1.340 —8.11 (25) 1PTb 1.38 (30)
Pro 1622 6.30 73.6 —85 (23) 1.07 7ETp 3.66 (30)
Leu 23 5.98 1.165 102 —10.8 (25) 1ETb 3.98 (30)
e 34 6.02 102 11.29 cf 2.58 (30)
Asn 25 5.41 72.4 Tp 0.81 (30)
Asp 5 2.77 1.660 68.4 4.7 (18) Tb 0.054 (30)
Lys 6 9.74 105.1 14.6 0.93 UA 0.002 (20)
Hyp 361 5.8 ~75.2 (23) 0.70 OA 0.18 (18)
Gin 42 5.65 92.7 X 0.05 (20)
Glu 8.6 3.22 1.538 84.7 11.5 (18) 0.97 1s0G 0.006 (25)
His 43 7.59 91.1 —30.01 (25) 0.66 G 0.004 (40)
Arg 181 10.76 1.100 109.1 12.5 0.46 HypoX 0.07 (19)
Phe 29 5.48 113.9 —35.14 A 0.09 (25)
Tyr 0.5 5.66 1.456 116.2 T 0.40 (25)
Trp 12 5.89 135.4 —31.5 (23) 5MC 0.45 (25)
U 0.36 (25)
C 0.77 (25)

a For the meaning of these names, see the footnote for Table 4.

manner. In ref 59 the case of the simulation of a
property with two and with five decimal figures is
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experimental plot of the crystal densities of 10 amino
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with a single molecular connectivity term (see para-
graph on specific rotations of amino acids). In this
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optimal plot, as shown in ref 59. The best way to
avoid this kind of error consists of checking the
accuracy of the prediction with calculated vs experi-
mental plot methods. Plot methods are not always
taken into consideration in modeling studies. They
can illustrate and detect violation of assumptions; i.e.,
values should show random fluctuations around the
main diagonal of the figure. This is equivalent to
saying that residuals should show random fluctua-
tion around a value of zero. Clusters of positive and
negative values might suggest that a curvilinear
trend in the data should be investigated. In a set of
values obtained in sequence, there should not be long
runs of values on the same side of the main diagonal
of the figure; i.e., there should not be systematic
trends in the sequence of residuals. Unfortunately,
it is difficult to quantify what constitutes a ‘long’ run.
Furthermore, by employing plotting methods it is
easier to detect the presence of outliers in the data
set, which lead to an inflated standard deviation, and
in some cases, this allows a strategy to be outlined
for their treatment.

F. Correlation Problem and Randic’s
Orthogonalization Procedure

In many cases LCCIs have a series of drawbacks,
as molecular descriptors are normally interrelated,
and the type of correlation is n-dependent (n, number
of points). The interrelation is measured by the
correlation matrix of the indices of a LCCI obtained
regressing every index as a function of every other
index of the LCCI and measuring the corresponding
regression coefficient, r. An interesting collinearity
criterion was proposed by Mihali¢ et al.®® They in fact
suggested that those with r > 0.98 should be consid-
ered as being strongly interrelated indices. A direct
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test for the overall collinearity among indices of our
{x} set for a specific property, P, is given by the mean
interrelation matrix value, [f;m(P:{x})P° One should
be reminded that even strongly interrelated indices
can further enhance the quality of a description as
the small fraction of an index which is not reproduced
by its strongly interrelated companion can provide
positive contributions to the modeling.

Thus, inclusion or exclusion of an index from an
LCCI on the exclusive basis of its collinearity can be
misleading.?’~2°8 Now, the mutual relatedness among
the different indices can result in highly unstable
regression coefficients of vector C. These coefficients
are, in fact, not stable under addition or deletion of
a single index into the regression equation. Further,
this mutual relatedness (i) may render the values
predicted for compounds not in the original ‘training’
data set unreliable, (ii) may render an analysis of the
relative importance of an index in a modeling an
useless task, and (iii) may underestimate the utilities
of regression coefficients with consequent loss of
validity of the LCCI. A way to short circuit these
drawbacks is to construct orthogonal indices, Q, by
the aid of an orthogonalization procedure outlined by
Randic.?572° These orthogonal indices (i) can render
the regression equation stable with the inclusion or
deletion of a new index, i.e., the regression param-
eters, ¢, are constant, (ii) can give information about
the importance of the indices in the regression
equation, thus detecting dominant descriptors, and
(iif) can improve the utilities of the coefficients of the
dominant descriptors. It should be noticed that the
statistical performance of the best LCOCI equals the
statistical performance of the best LCCI from which
it was derived, as orthogonal indices cannot expand
the information content of the original indices from
which they are derived.

It should be kept in mind that the ordering in
which the subsequent ordinary descriptors are added
in the normal LCCI fixes the orthogonalization
procedure. The drawback of doing further calcula-
tions to derive the orthogonal indices, a drawback
that can become quite heavy if the number of indices
to be orthogonalized is large and the number of
compounds to be modeled is not held constant, can
be avoided. It is, in fact, possible to obtain an
orthogonalized regression equation without recourse
to the orthogonal indices. All that is needed is to
derive stepwise LCCI regressions and then use the
diagonal coefficients as those of the sought-after
regression equation. The cy value of the unitary term
is given by the single-y linear regression. The or-
thogonalization procedure starts with the first best
connectivity index, which is chosen as the first 1Q
index; the second orthogonal index, ?Q! = 2Q, is
obtained by subtracting from the second index that
part which can be reproduced by Q. Such a process
goes on obtaining from a 'y index the corresponding
iIQ-1 = iQ) index, which is orthogonal to every "1Q
index.

G. Special Molecular Connectivity Indices

It is not rare to have a case of modeling where some
outliers dramatically influence the description with
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the consequence that they have to be left out of the
modeling. Now, if the outliers do not represent any
form of experimental error, they should clearly be
included in the modeling. Otherwise, some thought
should be given to what respect they may differ from
the rest of the set, if that is possible. As the concept
of outlier has a meaning in the context of a model,
knowledge of the reasons that give rise to them
should always be used to improve the model. The
unusual value of the property of some compound can,
in some cases, be better grasped supposing the
existence of association phenomena, either self-
association or association with other types of mol-
ecules through noncovalent interactions. Such as-
sociation phenomena can be modeled with the intro-
duction of the following medium-sized set of supra-
connectivity indices or supraindices: {ay} = {aD,
aDY, a%, a%v, aly,aly¥, x/a, y'/a}. Here the con-
nectivity indices are either multiplied or divided by
an association factor a that can also be a noninteger
factor.56.60-6365 Thijs parallels the method to give
outliers different weight on some kind of subjective
basis as this turns out to be equivalent to the
subjective assertion that the model is correct but the
data need to be adjusted. Now in some cases a critical
analysis of these outliers can reveal the existence of
self-association or association phenomena with the
solvent. In other cases, instead, owing to the lack of
more detailed information about the behavior of
compounds in solution, these phenomena have to be
inferred from an anomalous value of the property.
In the given set, the total connectivity indices, y: and
xi/, are divided by a. This choice resides in their
definition (see eq 6), as their values decrease with
increasing complexity of the chemical graph. Further,
the given set is only the most simple form of a set of
supraindices, whose most general form can be defined
in the following way, where p can be any rational
number

{(ax)"t ={(@D)", (@D")", (&%), (@°%")", (@*x)",
@), (/@) O'l2)" (15)

Throughout our studies it has been shown that for
p = —1 and 2, i.e., with reciprocal and squared
molecular connectivity supraindices,®°~%> an optimal
modeling for some properties can be reached.

One of the main drawbacks of the LCCI method is
that in some cases an excessive number of indices
are necessary to achieve a satisfactory modeling of a
limited set of compounds, with the consequence of a
loss of meaning of the corresponding LCCI. This loss
of meaning can be detected either from a decrease
in F under inclusion or deletion of a new index and/
or from the corresponding deterioration of some
utilities. The best solution would be to derive a
modeling equation with just a single descriptor, but
with y indices this is hardly possible. This task,
instead, can be achieved with the introduction of
molecular connectivity terms, X = f(y),%¢~7° which are
higher-order indices derived by a trial-and-error
composition procedure. This last procedure is per-
formed either on indices of {y} set (eq 8) or on indices
of the set of eq 15 and sometimes on subsets of these
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two sets. In this last case, the subset of best molec-
ular connectivity indices derived by the aid of a full
combinatorial procedure is chosen. Clearly, the fewer
indices to be tried, the easier the trial-and-error
search. In many cases it is possible to derive dead-
end terms, i.e., single dominant descriptors that do
not give rise to any improved linear combination with
other connectivity descriptors. This fact renders the
orthogonalization procedure useless. In other cases
the greedy algorithm alone is able to find an optimal
linear combination made up of connectivity terms and
other connectivity descriptors. Experience has shown
that the most general form for molecular connectivity
terms is

O ij)p
(cxy + dy)?

The optimization paameters b, ¢, d, p, and g can
either be positive, negative or even zero. If p and q
are integers, eq 16 represents rational functions, i.e.,
functions in which both the numerator and the
denominator are polynomials. Subscript P stands for
the acronym of the modeled property. Chi indices yi,
% Xk and y; are normally taken from set of eq 8, but
sometimes they can be taken from the set of eq 15,
and the result is a quite powerful but rather convo-
luted term. The rather tedious trial-and-error search
technique for the best term, if it works, is rather
straightforward and consists of the following steps:
(i) start with the best index, (ii) add to it another
index, (iii) optimize it, (iv) back-optimize the previous
index, (v) check if the introduced index should not
be optimized again (normally it does not), (vi) intro-
duce a new index and restart from step ii to step v
with an additional optimization step for the new
index, (vii) if further addition of a new index gives
no improvement, then construct the fraction and
restart from step ii to step v with additional optimi-
zation steps, (viii) introduce and optimize the differ-
ent coefficients b, ¢, d, p, and g. This procedure can
be schematized for the case of four parameters by the
aid of the following symbolism, where | stands for
introduction, O stands for optimization and C for
check operations, and the fraction can be constructed
at every level:

Xp (i Xip Xk xn = (16)

0(1)
1(2), O(2]1), O(1]2), C(2]1)
1(3), O(3|1, 2), O(213, 1), O(1]2, 3), C(3/1, 2)

1(4), O(411, 2, 3), O(3]4, 1, 2), O(2]3, 4, 1),

0(112, 3, 4), C(411, 2, 3)
Usually, this procedure either converges pretty rap-
idly or does not work at all. Normally, when molec-
ular connectivity terms are used the optimal model-

ing equation, eq 12, quenches into the simple linear
relation

P =c,X +c U, (17)

Here Uy = X° = 1 is the unitary connectivity term.

Pogliani

Already Kier and Hall'® had suggested that the
composition of ¥ indices into a single descriptor could
give rise to improved descriptors.

Molecular connectivity terms are, practically, theo-
retically optimized higher-order graph descriptors,
and even if they constitute a powerful tool for
modeling, they can nevertheless have problems in
modeling some classes of compounds. Problems nor-
mally arise with classes of highly ‘heterogeneous’
compounds, e.g., classes made up of saturated, un-
saturated, nonsubstituted, substituted, highly sub-
stituted, nonpolar, slightly polar, and highly polar
compounds. These are classes of compounds which
differ among them in the different level of noncova-
lent interactions, including hydrogen-bond interac-
tions. To model the properties of these compounds,
semiempirical molecular connectivity terms have
been introduced quite recently, i.e., either terms (i)
whose molecular connectivity indices are multiplied
by an empirical parameter or (ii) that just include in
their expression one or more empirical parameters.”
The empirical parameters are the dielectric con-
stants, ¢, ‘ad hoc’ e-related parameters which can
describe hydrogen bonds, and the molar masses, M.
Introduction of M, ¢, and e-related parameters also
allows analysis of some general characteristics of the
optimal descriptors. The dielectric constant has been
selected to improve the modeling as: (i) it is related
to the noncovalent character of a compound, (ii) a
wide wealth of values for this property are known,
and (iii) one can follow what is normally done in
molecular dynamics simulations, where the solvent
is normally mimicked by using its dielectric constant.
For a class of highly heterogeneous solvents, it has
been found that the best ‘ad hoc’ e-related parameters
are ay ~ €/15, aon, and a.. Parameter a,, ~ €/15 is
truncated at the first figure, and for ¢/15 < 1,a, =1
is assumed. The number 15 has been chosen as it
represents the molar mass of a CHjs radical. Hydro-
gen bonds in alcohols and acids contribute a, = 2
whatever the value of /15 is, but for compounds with
medium dielectric constant, like ethylenecarbonate,
aw = 3 is preferred. Compounds with a very high ¢
value, like formamide, have a,, = 7 and the contribu-
tion due to the hydrogen bond is neglected, while for
compounds with quite low ¢ value, like morpholine,
ay = 1 is preferred. The second e-related parameter
is aoq = 2 + €/15, truncated at the second figure.
When the number of alcohols in the data set is rather
low, then a. = a, = €/15 is used instead of a,, = 2.

lll. Modeling Properties of Different Classes of
Compounds

The experimental values of modeled properties and
the calculated values of the corresponding molecular
connectivity indices of the different classes of com-
pounds are collected in Tables 2—13. The original
experimental values of the studied properties can be
found in the works of the authors cited in the
References section and also in refs 25 and 87—97. Let
us now see how the molecular connectivity indices
and connectivity terms “earn their keep” by helping
us to model the greatest number of properties of as
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many different classes of compounds as possible and
possibly to uncover regularities in these descriptions.

A. Amino Acids

1. Side-Chain Molecular Volume

Let us start modeling the side-chain molecular
volume, Vaa, of N = 18 amino acids (AA) shown in
Table 2 (no Met, Cys, and Hyp), while in Table 3 are
reported the y an M values of AA. This is one of the
oldest and most successful modelings of an amino
acid property by molecular connectivity indices. The
first study on this property®” noticed that the ¥
index of the side chain could model Vaa in a remark-
able way. More recently®%85 it has been noticed that
the single index {%"} of the whole amino acid could
reach the same statistical score: Q = 0.25, F = 691,
r = 0.989, s = 3.95, W= 14.8. For a comparison, M
describes this property with Q = 0.069 and F = 83.
Both the forward selection and the full combinatorial
procedures choose the same LCCI, made up of two y
indices, {DY, %"}. This is the overall best LCCI for
this property® with Q = 0.40, F = 887, r = 0.996, s
= 2.48, = 12. This result is even better than the
result obtained with a LCCI consisting of more
descriptors. Here, the increasing F value guarantees
that the introduction index DY does not endanger the
description. The utility vector for each component of
the connectivity vector (DY, %, Uy) is quite satisfac-
tory, especially for the second index, %Y, with (5.1,
29, 4.0), where the last value is the utility of the
unitary index. The presence in the best LCCI of
valence indices only underlines the importance of a
pseudograph description for the side-chain molecular
volume of AA. In fact, many amino acid side chains
have lone pairs and/or double bonds: Thr, Ser, Gln,
Glu, Asn, Asp, Phe, Tyr, Trp, His, Lys, Pro, and Arg.
The correlation between the two LCCI indices, r(DV,
0y¥) = 0.826, following the criteria of Mihalovic et al.,
is not excessive. It is even less than the average value
of the interrelation matrix for this property: Ofhu(V:
{x})O= 0.883. A rapid trial-and-error search for a
higher-order index, based on the two best indices
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found, finds the following X term, 35Xy, = [(D)3%/%"],
which by itself is a rather poor descriptor (Q = 0.031
and F = 11) but together with %" again shows an
improved modeling at every statistical level

{3°X,, %"}: Q = 0.424, F = 989, r = 0.996,
s=2.35u=(5.3,34,7.4)

Index %V thus confirms its dominant character in
the description of Vaa, as not only is it a component
of the term found but it is also a component of this
last LCCI. The interrelation between the term and
index is better than the preceding interrelation
between DY and %y, in fact r(3°Xy , %") = 0.725. With
the new term we are, thus, decreasing the interrela-
tion. Nevertheless, the desirable solution remains a
description of Vaa with just one molecular connectiv-
ity descriptor, which at this level of the problem can
only be an improved sort of molecular connectivity
term. A more ambitious trial-and-error search with
all the indices of the set of eq 8 discovers the following
molecular connectivity term

_ (DV)1.3 + (0){)2.1

X
V' Dp'-0.7D

(18)

This term performs Q = 0.438, F = 2109, r = 0.996,
s=2.3,u= (46, 17). The improvement is impressive,
F more than doubles, and the utility of the unitary
term also. With this term, which is a dominant ‘dead-
end’ term, as it does not allow a better LCCI, the
orthogonality problem has been bypassed. The cor-
relation vector for vector (Xy, Up) is C = (18.1182,
—52.5871). Thus, the final modeling equation is Vaa
= 18.12Xy — 52.59. Rounding here to the first two
decimal figures is justified by the simplicity of the
equation. Anyway, when modeling with LCCls, the
full values of ci of the correlation vector C should be
consulted and used.

We notice now that the side-chain molecular vol-
ume is no longer dependent on %V, but through DY,
the other index of the first LCCI, continues to be

Table 3. Molecular Connectivity Indices for 21 Amino Acids and Their Molar M Masses

AA(M) D DV OX OXV 1% 1Xv 2t Xtv
Gly (75) 8 20 4.28446 2.63992 2.27006 1.18953 0.40825 0.03727
Ala (89) 10 22 5.15470 3.51016 2.64273 1.62709 0.33333 0.03043
Cys (121) 12 23.56 5.86181 4.55358 3.18074 2.40290 0.23570 0.02875
Ser (105) 12 28 5.86181 3.66448 3.18074 1.77422 0.23570 0.00962
Val (117) 14 26 6.73205 5.08751 3.55342 2.53777 0.19245 0.01757
Thr (119) 14 30 6.73205 4.53473 3.55342 2.21862 0.19245 0.00786
Met (149) 16 26.67 7.27602 6.14607 4.18074 4.04355 0.11785 0.01859
Pro (115) 16 28 5.98313 4.55413 3.80453 2.76688 0.08333 0.00932
Leu (131) 16 28 7.43916 5.79462 4.03658 3.02094 0.13608 0.01242
lle (131) 16 28 7.43916 5.79462 4.09142 3.07578 0.13608 0.01242
Asn (132) 16 36 7.43916 4.70278 4.03658 2.30434 0.13608 0.00254
Asp (133) 16 38 7.43916 457273 4.03658 2.23927 0.13608 0.00196
Lys (146) 18 32 7.98313 5.91594 4.68074 3.36624 0.08333 0.00439
Hyp (132) 18 34 6.85337 4.87159 4.19838 2.84158 0.06804 0.00340
GlIn(146) 18 38 8.14627 5.40997 4.53658 2.80434 0.09623 0.00179
Glu (147) 18 40 8.14627 5.27984 4.53658 2.73927 0.09623 0.00139
His (155) 22 42 8.26758 5.81918 5.19838 3.15529 0.03402 0.00080
Arg (174) 22 42 9.56048 6.70883 5.53658 3.60022 0.04811 0.00078
Phe (165) 24 42 8.97469 6.60402 5.69838 3.72222 0.02406 0.00069
Tyr (181) 26 48 9.84493 6.97388 6.09222 3.85651 0.01964 0.00027
Trp (204) 32 54 10.83650 8.10402 7.18154 4.71624 0.00567 0.00009
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determined by valence types of indices even if not
exclusively by them. Clearly we might wonder if
somewhere an even better term does not hide. The
characteristics of every trial-and-error procedure is
that it is an improvement—open search procedure.

2. Isoelectric Point

It was during the simulation of the pH at the
isoelectric point, pl, of n = 21 amino acids that indices
D and DY were introduced, together with the concept
of fragmentary molecular connectivity indices, i.e.,
indices which were mainly determined by the char-
acteristics of the secondary functional groups in
amino acids.®® In fact, as this property is highly
dependent on the type of side chain an amino acid
has, the normal connectivity indices of set eight
achieve a totally unsatisfactory modeling. The con-
struction of the first fragmentary molecular con-
nectivity indices in the cited paper was rather
awkward. Recently, an entire new and sound set of
fragmentary molecular connectivity terms has been
proposed, which were derived with a rather easy
trial-and-error procedure.®566.68 These terms are de-
fined in the following way

_ X An
if+2) 19)

Xol

where An = na — ng, Nna = no. of acidic groups (two
for Asp and Glu, one for all others), ng = no. of basic
groups (two for Lys and His, three for Arg, and one
for all others), and nt = 3 (total number of functional
groups); notice that for nt =2, An = 0. Clearly, there
are eight such terms following the type of index
which enters in numerator y. The nomenclature for
such terms can be defined in the following way for y
= DY — X = PXV etc.. The best single descriptor for
pl is XY, with Q = 2.12, F = 267, r = 0.966, s = 0.46,
u = (16, 28). These statistics, especially the utility
statistics, seem quite satisfactory. Now, Q statistics
can be improved, at the expenses of F and u statistics,
with the following LCXCI (linear combination of X
terms made up of connectivity indices), which can be
derived by the aid of both forward and full combina-
torial techniques

{PX", °X, °X¥, 'X}: Q = 2.53, F = 95,
r=0.980,s=0.39, u= (3.1, 2.8, 4.7, 2.8, 26)

Average iddrops from 22.4 to 7.9, the utility of X
drops dramatically, and only the unitary index
maintains a good utility.

To improve these utilities and detect possibly
dominant descriptors, use is made of the following
vector of orthogonalized terms: Q = (*1Q, 2Q, 3Q, 4Q,
Uo), where 1Q = XY, 2Q «— DXV, 3Q — IX, 4Q «— 0X,
The orthogonalized vector shows the following utili-
ties: u=(19, 1.3, 1.0, 2.8, 33). This utility vector tells
us that only the first 1Q = 9X¥ and the last Uy = Q°
= 1 parameters are important descriptors. We are
thus back to the single-term description but with an
enhanced utility for 1Q and Uy: 19 and 33 instead of
16 and 28. It should be noticed that the statistical
score of the molar masses for pl is Q = 0.002 and F
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= 0.14. An inspection of the interrelation between
the eight terms confirms their small interrelation as
Em(pl:{X})0= 0.560, ry(°X, X;) = 0.004 and rs°X,
IX) = 0.975, where r,, and rs stand for the weakest
and strongest interrelation, respectively.

A critical analysis of the term °X" lets us notice that
this term is rather trivial, as it is nothing other than
(1 + An/nt). Now, as the best description is given by
a relation consisting of this term only, this means
that molecular connectivity indices are not needed
to simulate this property. Let us resort to a deeper
trial-and-error search. This time we discover the
following not at all trivial term

("7 — 180y An
X pl = D \004'X¥ + n—

(20)

T

The modeling power of this dominant term is quite
remarkable: Q = 3.41, F = 693, r = 0.987, s = 0.29,
= 58, u = (26, 90), and the correlation vector is C
= (77.99429, 5.75382). Thus, the final modeling
equation can be written as pl = 77.99X',, + 5.75.
Not only is the improvement in F and u more than
expected, but further this term is a highly dominant
‘dead-end’ term, as it does not allow any better
combination with any other index or term. This term,
like the preceding °XV term, is mainly based on
valence-type molecular connectivity indices, an ex-
pected result as side-chain functional groups in
amino acids are rich in double bonds and lone-pair
electrons.

3. Crystal Density

The crystal density, CD, of 10 amino acids can,
with a seemingly satisfactory Q, F, and u statistics,
be modeled with a LCCI consisting of the following
molecular connectivity indices,>°6®

{D, D", %, %"}: Q =32.6, F =87, r = 0.993,
s=0.03, u=(5.2,11, 11, 8.1, 24), W= 12

It should here be noticed that in ref 59, owing to a
wrong value of y for Thr, a somewhat different but
also quite satisfactory result is obtained at the level
of the statistical parameters. The found LCCI shows
the best Q, F, and u values. Linear combinations with
more or less indices show worse Q, F, and u statistics.
The LCCI with five indices has Q = 29.2 and F = 36.
The best single index is %" index with Q = 3.44, F =
3.9, r = 0.570, which is a bad descriptor for this
property. Using four indices to model 10 property
values is a dubious choice that strongly suggests
using a trial-and-error procedure to look for a single-
term description. Two dominant but poor molecular
connectivity terms®® are thus discovered and finally
the following more satisfactory dominant term

(0% - 1.3

The statistical factors of this rather convoluted term
areQ=79, F=20,r=0.848,s=0.1, =54, u
= (4.5, 6.4). The modeling equation is CD = —0.51Xcp

cD (21)
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+ 4.18, while the correlation vector written in full
form, i.e., to five decimal points, is C = (—0.50967,
4.81717). The less-than-optimal plot of the modeled
versus the experimental values for this property has
already been shown in Figure 4, section I1.E. Relative
to the precedent LCCI made up of four y indices, the
only improvement is that now the crystal density can
be modeled with only one descriptor. Analyzing both
the LCCI and this term, we can conclude that the
crystal density is modeled by a mixed contribution
of valence and normal molecular connectivity indices
and that the % and %" indices seem to be ‘focal’ for
this property. To have an idea of the validity of the
modeling of CD by the Xcp term, it should be added
that the molar masses rate only Q = 1.9 and F =
1.1, i.e., connectivity indices and terms are, by far,
better descriptors than M, a fact which underlines
that these descriptors are poorly related to M.

4. Specific Rotation

The specific rotation of n = 16 L-amino acids, SR,
(in angular degrees, normally given as [0],%), is a
property that can be modeled by the aid of eq 13 only,
as some of its values are negative. Further, the
modeling of SR, can automatically be extended, with
eq 14, to the modeling of SR, of b-amino acids, which
are just opposite in sign relative to SR,. Practically
the modeling of SR, is completely equivalent to the
modeling of SRy, and in describing this property, we
will drop the subscripts L and p and just define this
property as SR. A first modeling of the 16 SR values
of Table 2 done with a subset of six indices, {D, DY,
Ov, 9%V, 1y, %¥},57% and with a full combinatorial
procedure is rather deceiving but, nevertheless, much
better than the modeling achieved by the molar
masses; in fact, the best two index {%;, 1x}-LCCI rates
Q =0.053,F =22, r=0.88, s =17, = 5.9 while
the molar masses rate Q = 0.0003, F = 0.34.

Running the medium-sized set of eq 11 with a ‘fc’
procedure®® allows us to detect (i) the best single-
index LCCI, {y}, with quite poor statistics, Q =
0.014,F=3.2,r=0.43,s = 30, = 2.1, and (ii) the
following optimal 3-y-LCCI, where no valence mo-
lecular connectivity indices contribute to the model-
ing

{D, %, 7}: Q =0.088, F = 41; r = 0.955,
s=11,u= (6.8, 9.8, 4.3, 7.9), L= 7.2

Combinations with more than three indices show
an increasingly unsatisfactory modeling. The inter-
relation among these indices is not excessively bad
as r(D, %) = 0.88, r(D, ) = 0.86, and r(°, ) = 0.80.
The introduction and use of the following set of
reciprocal molecular connectivity indices {R} = {PR,
PRY, °R, °RY, 'R, 'RY, Ry, R}, where, e.g., °RY = (%") 1,
allows detection of an even better description for SR.
The full combinatorial search procedure extracts the
following optimal reciprocal two-index LCRCI

{°R,°R}: Q =0.089, F =62, r = 0.952,
s=11,u=(11, 11, 5.8), W= 9.2

The improvement in F and utility over the preceding
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3-y-LCCI combination is noteworthy. The higher
interrelation of these indices relative to the best y
indices, r(°R, °R) = 0.92, underlines the fact that a
good description does not always need poorly inter-
related indices. Here we notice again that reciprocal
valence indices do not bring any contribution to the
modeling of SR and also that no combination with
more reciprocal indices shows a better statistical
rating than this two-reciprocal index combination.
Before testing a trial-and-error procedure to discover
a more effective X term, let us point out that the best
single-index LCRCI, {PR}, rates very badly, even
poorer than y;, with Q = 0.009, F=14,r =0.3,s =
32, = 1.4.

The trial-and-error procedure with subset {D, %,
xi} discovers the following general optimal term for
SR

Xsr = /(D + ayy) (23)

For a=1and 7, two nearly equivalent optimal terms
are obtained whose descriptive power is much better
than y: and PR, i.e., {Xsr(1)} Q = 0.035, F =20, r =
0.77,s =22, 0= 4.8 and {Xsr(7)} Q =0.044, F =
30, r = 0.83, s = 19, = 5.6. Both terms allow the
search procedure for the best combination to the
forward selection procedure to be restricted. This
combinatorial procedure done with the expanded set,
{D, DY, %, %", Y%, ¢, xt, xt', Xsr}, allows the following
optimal combinations to be discovered

{7, Xsr(1)}: Q = 0.100, F = 80, r = 0.961,
s=09.6,u=(7.6,12, 12), W= 11

Here r(Yy, Xsr(1)) = 0.76, a rather poor interrelation
indeed. Notice the good utility of the Xsr(1) term and
the improved utility of the unitary term. The optimal
combination with the Xsg(7) term, instead, is made
up of three descriptors, {1y, xt, Xsr(7)}: Q = 0.097, F
= 50, = 8.1; i.e., the best single term with the
lowest interrelation with Yy, r(*y, Xsr(7)) = 0.58, offers
the worse two- and three-index description. The other
correlations are rather satisfactory with r(‘y, y) =
0.87 and r(y:, Xsr(7)) = 0.57. Analysis of the type of
x indices involved in the modeling of SR bring us to
guestion ourselves if optical activity is really con-
tributed only by a chemical graph representation of
a molecule, i.e., by the o-electron framework of the
amino acids only. On the other hand, the possibility
to model SR with just one optimal ‘dead-end’ term is
too tempting not to be tried. A new trial-and-error
search on the entire set of eq 8 unveils the following
quite satisfactory ‘dead-end’ term, where valence
molecular connectivity indices also play a role and
Ly index does not appear anymore

_ % = ()>®
D% + 0.2(y,) >

!

SR

(24)

This term shows the following statistics and re-
gression vectors, C, and C,, for the L- and p-forms of
32 [L + p] amino acids: Q = 0.084, F = 112, r = 0.943,
s=11, =11, u=(11,11), C, = (573.114, —430.56),
and C, = (—573.114, 430.56) (see eqgs 13 and 14). The
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Figure 5. Plot of the calculated (calcd) versus the experi-
mental (exp) specific rotation, SR, for 32 amino acids.

final modeling equation for the L-form can be written
as SR, = 573-X'sg — 431, and in Figure 5 the
calculated versus the experimental plot of this prop-
erty for the 32 SR, plus SR, values is shown. The
connectivity term of eq 24 shows a tremendous
improvement relative to the single index description
{xi}: Q = 0.014, F = 3.2, and an improvement in F
relative to the {1y, Xsr(1)} combination. Thus, 32 SR
(SR, + SRy) values can satisfactorily be described by
a single descriptor which combines information from
the chemical graph and pseudograph of a molecule.

To justify with graph theory the differences in p-
and L-amino acids, i.e., that C, = — C,, we might
resort to the introduction of digraphs (and pseudo-
digraphs), i.e., of directed graphs in which the direc-
tion associated with the edges can be drawn with
inverted arrows for p- and L-forms of Ala, as shown

in Figure 6.

Figure 6. Digraphs of the amino acid L-Ala (left) and
p-Ala.

5. Solubility

The solubility, S, of amino acids, whose experimen-
tal values are shown in Table 2, was and is, together
with the solubility of purines and pyrimidine bases,
the most problematic property studied with LCCI and
with molecular connectivity terms.57:59.606365-69 |t yyas
the need to model the solubility of the entire class of
amino acids, including the strong outliers Arg, Ser,
Hyp, and Pro, that obliged us to introduce the
supraconnectivity indices of eq 15, with a(Pro) = 8,
a(Ser, Hyp, Arg) = 2, and a(others) = 1 and p = 1.
This parameter, a, can either have the statistical
meaning of a weighting factor or the physical mean-
ing of an association parameter due to inter- and
intramolecular association phenomena in solution.
The association parameter for Pro, Ser, Hyp, and Arg
can, to date, be inferred only from their anomalous
solubility value rather than from experimental evi-
dence. Thus, at this time, it is better to look at a as
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Figure 7. Plot of the calculated (calcd) versus the experi-
mental (exp) solubility, Sol, for 20 amino acids. Insert: zoom
of the solubility region 0—50. Calculated values have been
obtained with the modulus equation (see text).

a statistical weighting factor. Let us start the model-
ing noticing that the molar masses are quite bad
descriptors of the solubility of amino acids with Q =
0.0009 and F = 2.1. While the introduction of supra-
connectivity indices did not achieve the expected
improvement, the introduction, instead, of the fol-
lowing set of suprareciprocal connectivity indices
improved the modeling in a consistent way (see eq
15 with p = —1 and a outside the parentheses)

{aR} =
{a°R, a"R", aR, a°R", a'R, a'R", R/a, R,"/a} (25)

Here, R = 1/y, e.g., for y = % we have R = °RY etc.
Now, the best single suprareciprocal index regression
made up of {a’R"} index alone shows an astounding
modeling power relative to M

{a°RY}: Q = 0.0287, F = 2052, r = 0.996,
s =35, u = (45, 13), W= 29

The regression vector for this descriptor is C =
(1010.789, —139.389). The resulting modeling equa-
tion is thus the following modulus equation: Saa =
[1011(a°RY) — 139|. Using the absolute value to
remove a meaningless negative solubility increases
F(Scaica/Sexp) from 2052 to 2127. The calculated versus
the experimental solubility values are shown in
Figure 7, where four outliers are clearly visible in
the insert. As the full combinatorial procedure does
not uncover any better LCRCI, we can conclude that
the given suprareciprocal valence index a’RY = a/%V
is a highly dominant ‘dead-end’ descriptor.

Now, descriptor {a°RY} does not seem very robust
since after excluding from the modeling the outliers
Arg, Hyp, Pro, and Ser and, then, modeling the 16
remaining solubility points with the {a°RY} index
again, the following statistics are obtained Q =
0.0294, F =59, r =0.899, and s = 31, with an evident
decrease in r and F values. For these 16 points, the
{a°R} reciprocal index is the best single descriptor
with Q =0.038, F =97, r = 0.935, s = 25, and 0=
8.7. Both full and forward combinatorial procedures
uncover, for these same 16 points, the {a°R, Ry/a}
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combination, which has an improved Q and a not too
deteriorated F: Q = 0.049, F =81, r = 0.962, s = 20,
and [WO= 8.2. It should be noted that for the given
16 points, and only for them, a = 1. The most
interesting aspect of {a°R} and {a°R, Ry/a} descrip-
tors resides in their stability, as both seem to be quite
robust descriptors. Modeling, in fact, the 20 solubility
points with their help we obtain the following very
interesting results

{a°R}: Q =0.023, F = 1358, r = 0.993,
s =43, u=(37,9.6), W= 23

{a°R, R/a}: Q =0.023, F =672, r =0.994,
s =43, u=(36,0.9, 7.4), = 15

The bad utility of the R¢/a index is the source for the
decreasing [WiOvalue in second combination. This
descriptor, R¢/a, is then practically useless for the
modeling, and we can conclude that a good and robust
descriptor for the solubility of amino acids is the
single a°R suprareciprocal index.

B. Purine and Pyrimidine Bases

1. Solubility

The modeling of solubility for purine and pyrimi-
dine (PP) bases of Table 2 (see Table 4 for y and M
values) was first achieved in 1996 by the aid of
squared supramolecular connectivity indices of eq 15,
with p = 2.5265 A preceding study®! on a smaller set
of bases for which there was experimental evidence
of association phenomena in solution was, however,
seminal for the introduction of supramolecular indi-
ces. The association values used are a(7PTp) = 4,
a(letb, 7ETp, Cf) = 2, and a(7Itp) = 1.5. Molar
masses are again very bad descriptors for this
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property of PP, with Q = 0.006 and F = 1.9 The best
single-descriptor regression has the following de-
scriptor and statistics (notice we are modeling in
g/1000 mL of water in accordance with amino acids)

{(@%)%: Q = 0.176, F = 1553, r = 0.993,
s=57 M= 22

Both forward and full combinatorial procedures
uncover the following best two-descriptor LCSCI (S
stands for squared)

{(@"%)% (r/a)’}: Q = 0.240, F = 1445,
r=0.997,s = 4.2, = 22

Linear combinations with more than two descriptors
show (i) an unsatisfactory statistical behavior of the
combination chosen with the forward selection com-
binatorial procedure and (ii) a dramatically deterio-
rating utility vector of combinations chosen by the
aid of both search procedures. The choice between
the single-index and the two-index combination is not
obvious, but we prefer the two-index LCSCI. The
modeling equation then is Spp = |0.2582(aly)? +
1779(x/a)? — 9.275|, while the full regression and the
utility vectors are C = (0.25815, 1778.7, —9.2746), u
= (53, 4.3, 8.0). In Figure 8 are shown the calculated
versus the experimental solubility values with the
modulus equation to get rid of meaningless negative
values. The use of the modulus equation improves
Q(Scalca/Sexp) from 2.46 to 2.59 and F(Scaica/Sexp) from
3037 to 3367. The insert in Figure 8 shows the
evident presence of some outliers.

Regarding association phenomena in solution, it
should be emphasized that they have been studied
for no more than four compounds (see ref 61 and
references therein), for which the following associa-
tion values have been proposed: (i) for 7PTp, a = 4

Table 4. Calculated y Values for 23 Purine and Pyrimidine Bases? and Their Molar M Masses

PP (M) D D 4 %" % A x e
718MTp (250.3) 38 62 13.61036 11.38981 8.34111 5.97071 0.003564 8.51E—05
7B8MTp (250.3) 38 62 13.44723 11.22667 8.48527 6.11486 0.003086 7.37E-05
71Tp (236.3) 36 60 12.74012 10.46716 7.93043 5.53989 0.004365 9.82E—05
7BTp (236.3) 36 60 12.57699 10.30402 8.07459 5.68405 0.00378 8.51E—05
1BTb (236.3) 36 60 12.57699 10.30402 8.07459 5.68405 0.00378 8.51E—05
7PTp (222.2) 34 58 11.86988 9.59691 7.57459 5.18405 0.005346 0.00012
1PTb (222.2) 34 58 11.86988 9.59692 7.57459 5.18405 0.005346 0.00012
7ETp (208.2) 32 56 11.16277 8.88981 7.07459 4.68405 0.00756 0.00017
1ETb (208.2) 32 56 11.16277 8.88981 7.07459 4.68405 0.00756 0.00017
Cf (194.2) 30 54 10.45567 8.1827 6.53658 4.10793 0.01069 0.00024
Tp (180.2) 28 52 9.58542 7.23549 6.1259 3.71758 0.013095 0.000269
Tb (180.2) 28 52 9.58542 7.23549 6.10906 3.7135 0.013095 0.000269
UA (168.1) 26 54 8.71518 5.72474 5.6647 3.11237 0.01604 0.00013
OA (156.1) 22 50 8.43072 5.24931 5.09222 2.66333 0.03928 0.00027
X (152.1) 24 48 7.84493 5.34106 5.27086 2.92873 0.01964 0.00034
150G (151.1) 24 46 7.84493 5.45738 5.27086 2.96049 0.01964 0.00043
G (151.1) 24 46 7.84493 5.45738 5.27086 2.96049 0.01964 0.00043
HypoX (136.1) 22 42 6.97469 4.95738 4.87701 2.74509 0.02406 0.00085
A(135.1) 22 40 6.97469 5.07369 4.87701 2.77277 0.02406 0.00108
T (126.1) 18 36 6.85337 4.89385 4.19838 2.4856 0.06804 0.00301
5MC (125.1) 18 34 6.85337 5.01016 4.19838 2.51736 0.06804 0.0038
U (112.1) 16 34 5.98313 3.9712 3.78769 2.06893 0.08333 0.00347
C (111.2) 16 32 5.98313 4.08751 3.78769 2.1007 0.08333 0.00439

a A = Adenine, G = Guanine, U = Uracil, T = Thymine, C = Cytosine, OA = orotic acid, UA = uric acid, X = Xanthine, M =
methyl, P= propyl, B = butyl, | = isobutyl, Cf = Caffein =137MMMX = 7MTp, Th = Theobromine = 37MMX, Tp = theophylline

= 13MMX.
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Figure 8. Plot of the calculated (calcd) versus the experi-
mental (exp) solubility, Sol, for 23 purine and pyrimidine
bases. Insert: zoom of the solubility region 0—50. Calculated
values have been obtained with the modulus equation (see
text).

and 2 in unknown proportions, (ii) for Cf, a = 1, 2,
and 4 in unknown proportions, (iii) for 7ETp and
1Etb, a = 2. The value a = 1.5 for 7Itp has been
inferred assuming an equimolar mixture of monomer
and dimer. Quite probably also other bases are
expected to undergo some degree of self-association
or association with the solvent in solution. An indirect
answer to this topic can be given from the following
leaving one (or more) out procedure: (i) excluding
from the modeling the inferred value for 7Itp and
modeling the n = 22 compounds with the same
LCSCI, we obtain a satisfactory statistical result: Q
=0.234, F = 1372, r = 0.997; (ii) excluding 7PTp also,
r starts to decrease consistently: Q = 0.297, F = 120,
and r = 0.964; (iii) excluding 7Itp, 7Ptp, Cf, 7ETp,
and 1Etb, a poor modeling of the remaining n = 18
solubility points is obtained: Q = 0.204, F = 4.8, r =
0.624. If we, instead, model the 12 compounds from
Tb to C (see Table 2) using the same LCSCI, we
obtain Q = 0.896, F = 26, r = 0.922. The modeling of
these 12 compounds can be improved further if index
(x+/a)? alone is used; in fact, in this last case we obtain
Q = 0944, F = 57, r = 0.944. Such an erratic
behavior for the modeling of PP might be explained
if it is assumed that more than five purines and
pyrimidines undergo, to some extent, association
phenomena in solution.

2. Singlet Excitation Energy, Oscillator Strength, and
Molar Absorption Coefficient

The five properties of DNA—RNA bases, the first
and second singlet excitation energies, AE; and AE;,
the first and second oscillator strengths of the first
singlet excitation energy, fi, and f,, and the molar
absorption coefficient, €60, at 260 nm and pH = 7
(see Table 5) have been thoroughly analyzed in recent
work.62.66.:68.69 The simulation of the molar absorption
coefficient exe0,exp @t 260 Nm and pH = 7 of nucleotides
UMP, TMP, AMP, GMP, and CMP is done using the
connectivity indices of U, T, A, G, and C only, because
the only uncommon part of these nucleotides are
these bases. Different kinds of optimal terms have
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Table 5. Experimental (exp) Molar Absorption
Coefficient exggexp at 260 nm and pH = 7.0, First (AE3)
and Second (AE;) Singlet Excitation Energies in eV,
and First (f;) and Second (f;) Oscillator Strength
Values (of the first singlet excitation energies) of the
Nucleotide DNA—RNA Bases®

bases 6250/1000 AEJ_ AEQ f]_ fz
A 15.4 4.75 5.99 0.28 0.54
G 11.7 4.49 5.03 0.20 0.27
U 9.9 481 6.11 0.18 0.30
T 9.2 4.67 5.94 0.18 0.37
C 7.5 461 6.26 0.13 0.72

been discovered, and all of them are better descrip-
tors than the corresponding molar masses, M. Up to
now the best terms for the first and second oscillator
strengths, f; and f,, and the molar absorption coef-
ficient ex60 at 260 nm and pH = 7 are

1 v
_ X
X =——F—— (26)
b+ 0.6%Y
\"
Xt
Xy, = (27)
2 Ot — 16'0Xtv)
1 v
=4 (28)

X, =
Cx +2:%

The resulting description is reasonable with f; and
€260 described by the same kind of term and f;
described by a term which is a function of total
connectivity indices alone

f: Q=31,F=12,r=0.89,s=0.03,
W= 3.1;,QM) =11, F(M) = 1.4

f,, Q=11, F=17,r=0.92,s = 0.08,
W= 3.3; Q(M) = 2.3, F(M) = 0.7

260, Q=0.8,F=21,r=00936,5s=1.2,
W= 4.2; QM) = 0.2, F(M) = 1.9

The modeling of the first and second singlet excita-
tion energies, AE1, and AE,, can be achieved with a
unique term. The following term is in fact a rather
efficient descriptor for both properties, especially for
the second one

XAE -

0 5
—r (29)
Ke T 107y,
AE,;: Q=89,F=50,r=079,s=0.1,

[W= 55; QM) = 4.9, F(M) = 1.5

AE,; Q=6.9,F=44,r=0.97,s=0.1,
W= 46; QM) = 3.7, F(M) = 12

Practically, the five properties are described by a
formally similar molecular connectivity term while
the two energies are modeled by the same term,
which is highly dependent on total molecular con-
nectivity indices. Further, every term is a mixing of
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x and yV types of indices. Every property is thus
described by terms which are 6 and ¢" dependent, a
result that seems in keeping with quantum chemistry
calculations.®

C. Solubility of the Mixed Class of [AA + PP]

Modeling of the solubility of the mixed class of
amino acids plus purines and pyrimidines for a total
of n = 43 compounds has been attempted and further
refined since the introduction of supramolecular
connectivity indices.®¢~% The modeling of the solubil-
ity of this special mixed set requires the introduction
of the following new set of supraindices

{aD'Xtv’ aDV'XtV’ aOX'Xth aOXV'Xth
alX'Xtva alXV'Xtvv Xt'a_la Xtv'a_l} (30)

Here, a = 8 for Pro, a = 2 for Ser, Hyp, and Arg, and
a = 1 for the other amino acids. For purines and
pyrimidines, instead, we have a = 4 for 7PTp, a = 2
for 7Etb, ETp, and Cf, a = 1.5 for 7Itp, and a = 1 for
the remaining bases. To simplify things, set 30 will
be renamed as

{DS, DSV, OS, OSV, 18, 1SV, St, StV} (31)

The trial-and-error search for an optimal descriptor
for the 43 solubility points (no Cys but with Hyp
included) discovers the three dominant ‘dead-end’
terms of eqs 32—34 which can achieve a quite
satisfactory modeling

D' —°s

= = 32
(e + 350 2

XSl

Q = 0.020, F = 1079, r = 0.982, s = 50,
W= 24, u = (33, 15)

(S, — 0.0002)"2

(33)

s2 =

Q =0.010, F = 297, r = 0.937, s = 91,
W= 9.9, u = (17, 2.6)

(DSV)0.3 _ 0.9(DS)0.3
Kar = 34
2 (892 4 0.9(s)°3 (34)

Q = 0.0096, F = 260, r = 0.929, s = 97,
W= 14, u = (16, 13)

Term Xs; seems to be the best term to model the
solubility of this mixed class of compounds. Its
statistical Q, F, r, s, and u values are very good.
However, let us see which of these terms is also a
good descriptor for the subclasses composed of AA
and of PP alone

Xs; — AA: Q = 0.020, F = 1007, r = 0.991,
s =49, M= 21, u = (32, 11)
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Xs; — PP: Q = 0.026, F = 35, r = 0.791,
s=30, M=5.1,u=(509,4.2)

X, — AA: Q = 0.008, F = 155, r = 0.946,
s =120, W= 7.7, u = (12, 3.1)

Xs, — PP: Q = 0.282, F = 4005, r = 0.997,
s=23.5, =33, u = (64, 3.1)

Xz — AA: Q = 0.029, F = 2070, r = 0.996,
s = 35, = 38, u = (46, 31)

Xg3 — PP: Q = 0.042, F = 88, r = 0.899,
s=22, [=8.7,u=(9.4,8.1)

Descriptor Xs; is a quite good descriptor for S(AA)
but an inadequate descriptor for S(PP), with a rather
low r value. Descriptor Xs; is the overall best descrip-
tor for S(PP) and a rather good descriptor for S(AA)
but with quite poor s statistics, which deteriorates
Q(AA) consistently; further, the U,y utility for both
S(AA) and S(PP) is not brilliant. Finally, descriptor
Xs3 is up to now the best descriptor for S(AA) and a
less satisfactory descriptor for S(PP). Considering, as
already said, that association phenomena in solution
of a large majority of these compounds is quite far
from being understood, we think that Xs; should, for
the moment, be considered as the best descriptor for
this mixed class of compounds. Notice that if the
solubility is modeled with g/100 mL of H,O, the
statistical results at the level of s and Q change by a
factor of 10. Notice also the amazing formal sym-
metry of the Xs; term.

To emphasize the ability of the trial-and-error
method to discover satisfactory terms, we show here
the dominant term of eq 35, whose statistical values
for the mixed class [AA+PP] are Q = 0.021, F = 1199,
r = 0.983, s = 47, = 23, u = (35, 11).

X B (DSV)l.l _ (DS)l.l 35
S4 7 3, 0.7 (35)
(e +10%x)

This term fails at the level of the single subclasses,
as for S(AA) it has Q = 0.018, F = 805, r = 0.989
and for S(PP) things are even worse with Q = 0.021,
F =22, r = 0.742. This term together with index D
shows somewhat improved Q statistics, due to a
better r and s

{Xss D}: Q =0.024, F = 779, r = 0.987,
s =42, =17, u = (38, 3.6, 7.8)

For comparison, the molar masses rate Q = 0.001, F
=29, r=0.26.

D. Alkanes

The melting points, MP, and the motor octane
numbers, MON, of alkanes, especially this last
property, have been thoroughly examined by different
authors on many occasions and with different de-
scriptors?5:3461.656869 and even with quantum theo-
retically based indices® (MON only).
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Table 6. Molar Masses, M, Experimental Melting
Points, MP (K), Motor Octane Numbers, MON, and
Calculated Molecular Connectivity Indices for 17 and
39 Alkanes?2594

0.

1

alkanes M MP MON D e x At

4 58.1 90.1 6 3.41421 1.91421 0.5000
2M3 58.1 97.6 8 4.28445 2.27005 0.4082
2M4 72.2 90.3 6 3.57735 1.73205 0.5774
2M5 86.2 73.5 10 4.99156 2.77005 0.2887
24MM6 114.2 135.65 69.9 14 6.56981 3.66390 0.1667
33MM5 100.2 138.69 86.6 12 5.91421 3.12132 0.2500
5 72.2 619 8 4.12132 2.41421 0.3536
23MM4 86.2 144.61 94.4 10 5.15470 2.64273 0.3333
33MM6 114.2 147.05 83.4 14 6.62132 3.62132 0.1768
22MM5 100.2 149.34 95.6 12 5.91421 3.06066 0.2500
22MM6 114.2 151.97 77.4 14 6.62132 3.56066 0.1768
4M7 114.2 39 14 6.40577 3.80806 0.1443
3M7 114.2 35 14 6.40577 3.80806 0.1443
3M6 100.2 55.0 12 5.69867 3.30806 0.2041
24MM5 100.2 153.91 83.5 12 5.86180 3.12589 0.2357
23MM5 114.2 154.05 88.5 12 5.86180 3.18073 0.2357
3E5 100.2 65.0 12 6.69867 3.34606 0.2041
2M6 100.2 46.4 12 5.69867 3.27005 0.2041
3M5 86.2 743 10 4.99156 2.80806 0.2887
23ME5 114.2 158.19 88.1 14 6.56891 3.71874 0.1667
223MMM5 114.2 99.9 14 6.78445 3.48138 0.2041
234MMM5 114.2 95.9 14 6.73205 3.55341 0.1925
2M7 114.2 23.8 14 6.40577 3.77005 0.1443
224AMMMS5  114.2 100.0 14 6.78445 3.41650 0.2041
233MMM5 114.2 99.4 14 6.78445 3.50403 0.2041
22MM4 86.2 173.28 93.4 10 5.20710 2.56066 0.3536
6 86.2 26.0 10 4.82842 2.91421 0.2500
25MM6 114.2 181.95 55.7 14 6.56981 3.62589 0.1667
7 100.2 0.0 12 5.53553 3.41421 0.1768
23MM7 128.3 157.15 16 7.27602 4.18073 0.1179
22MM7 128.3 160.15 16 7.32842 4.06066 0.1250
26MM7 128.3 170.25 16 7.27602 4.12589 0.1179
33ME5 114.2 182.28 14 6.62132 3.68198 0.1768
33EES5 128.3 240.04 16 7.32842 4.24264 0.1250
22MM3 722 256.60 80.2 8 5.50000 2.00000 0.5000

a2 = ethane, 3 = propane, etc.; M = methyl, E = Ethyl;
e.g., 34ME6 = 3-methyl-4-ethylhexane.

1. Melting Points

The melting point constitutes up to now one of the
properties that resists any attempt of a satisfactory
modeling by molecular connectivity indices and/or
terms. To model the MP of 56 alkanes, a strategy
named ‘double-sieve’ was adopted, which consist of
(i) first performing a general modeling of the class of
compounds, (ii) detecting patterns in this modeling
which (iii) allow sorting of subclasses, which are apt
to be modeled in a more satisfactory way. This sorting
procedure is not a random procedure, as normally
subclasses contain compounds with common charac-
teristics, such as the subclass of 17 melting points of
Table 6. This subclass, [MMi + MEi + EEi], is made
up of alkanes with evident common features; in fact,
i stands for the main chain, and M and E stand for
methyl and ethyl substitutes along the main chain,
respectively. The reader should not forget that as
alkanes can be represented by simple graphs only,
they do not have any y"-type indices. The best single
descriptor for this subclass of 17 alkanes is the term
of eq 36, which performs Q = 0.033, F =19, r = 0.749,
s =23, =57, u = (4.4, 7.0).

Pogliani

_ O-%
(% =391

This term is far from being an optimal descriptor. A
better but not optimal description for this property
can be achieved by a normal LCCI composed of the
following two indices whose correlation value is r(y,
xt) = 0.97

(36)

MP

{*%, 73:Q=0.043, F = 16, r = 0.834, s = 20,
W= 5.0, u = (5.2, 5.6, 4.3)

This (and preceding) modeling is nevertheless much
better than the modeling obtained with the molar
mass as a descriptor, which achieves Q = 0.005, F =
0.38, and r = 0.16.

2. Motor Octane Number

The motor octane number of the 30 alkanes of
Table 6 can rather satisfactorily be modeled at the
single index level by a molecular connectivity term
found by the aid of a trial-and-error search within
the {D, %, Y, x«} set. While molar masses are again
quite bad descriptors with Q = 0.006, F = 0.79, r =
0.17, the obtaiend Xuon 0f eq 37 shows the following
statistics

Q =0.085, F = 146, r = 0.916, s = 11,
W= 20, u = (12, 27)

O+ O
MON (OX _ 1-5‘1X)1'2

(37)

The correlation vector for this term is C = (—1.6714,
121.02), and a simplified modeling equation could be
MON = |—1.67Xmon + 121]. In Figure 9 the calcu-
lated MON values (with modulus equation) versus
the corresponding experimental ones are plotted.
This dominant term offers the possibility, through a
forward combinatorial search, to find a mixed linear
combination of a molecular connectivity term and

120
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[ ]
n
ll‘
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=
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Figure 9. Plot of the calculated (calcd) versus the experi-
mental (exp) solubility, MON, for 30 alkanes. Calculated
values have been obtained with the modulus equation (see
text).
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Table 7. Molar Mass, M, Observed Molar Refractivity, MRp, Refractivity Index, np?°, Density, d;?° and Calculated
Molecular Connectivity Values of 17 MPO(OR’), Neutral Organophosphorus Compounds?®*

R’ M MRp np2° d,20 D 0y Ly Ly 1t
Bu 208.2 54.42 1.4259 0.9638 24 10.15685 6.12132 5.48471 0.03125
isoBu 208.2 54.86 1.4226 0.9653 24 10.48313 5.83300 5.19640 0.04167
secBu 208.2 54.81 1.4222 0.9657 24 10.48313 5.90901 5.34997 0.04167
terBu 208.2 54.46 24 10.91421 5.41421 4.90140 0.06250
n-Pe 236.3 64.19 28 11.57107 7.12132 6.48471 0.01563
isoPe 236.3 63.61 1.5264 0.9529 28 11.89734 6.83300 6.19640 0.02083
22MMP 236.3 64.27 28 12.32843 6.41421 5.77761 0.03125
n-H 264.3 73.45 1.4353 0.9401 32 12.98528 8.12132 7.48471 0.00781
c-H 260.3 69.23 36 12.13998 8.15660 7.59755 0.00391
n-Hep 292.4 82.87 1.4401 0.9303 36 14.39949 9.12132 8.48471 0.00391
Octyl 320.5 91.24 1.44 0.9257 40 15.81371 10.12132 9.48471 0.00195
1Mhep 320.5 92.02 1.4381 0.9146 40 16.13998 9.90901 9.34997 0.00260
2EH 320.5 91.18 1.4414 0.9289 40 16.13998 9.98502 9.34842 0.00260
Nonyl 348.5 101.1 1.4445 0.9164 44 17.22792 11.12132 10.48471 0.00098
Decyl 376.6 109.7 1.4427 0.9093 48 18.64213 12.12132 11.48471 0.00049
Undec 404.6 119.8 1.4498 0.9077 52 20.05635 13.12132 12.48471 0.00024
Dodec 432.7 129.3 1.4512 0.9012 56 21.47056 14.12132 13.48471 0.00012

a M = methyl, E = ethyl, P = propyl, Bu = butyl, Pe = pentyl, H = hexyl, Hep = heptyl, Undec = undecyl, Dodec = dodecyl,

¢ = cyclo.

Table 8. Observed Retention Index R¢ for Paper
Chromatography, Calculated Molecular Connectivity
Values, and Molar Masses of 14 RPO(OR'), Neutral
Organophosphorus Compounds (see abbreviations for
Table 7, Oc = octyl)**

R R M R % 4 b 1t

M E 1521 0.80 7.32843 4.12132 3.48471 0.125

M P 1802 0.71 874264 5.12132 4.48471 0.06250
M Bu 2082 0.62 10.15685 6.12132 5.48471 0.03125
E Bu 2223 059 10.86396 6.68198 5.99524 0.02210
P Bu 2363 053 11.57107 7.18198 6.49524 0.01563
M  Pe 2363 048 1157107 7.12132 6.48471 0.01563
Bu Bu 2503 0.46 12.27817 7.68198 6.99524 0.01105
M H 2643 0.38 12.98528 8.12132 7.48471 0.00781
Pe Bu 2643 0.38 12.98528 8.18198 7.49524 0.00781
H Bu 2784 0.34 13.69239 8.68198 7.99524 0.00276
Hep Bu 292.4 0.26 14.39949 9.18198 8.49524 0.00138
M Hep 292.4 024 14.39949 9.12132 8.48471 0.00391
Oc Bu 3064 0.22 1510660 9.68198 8.99524 0.00069
M  Oc 3205 0.15 1581371 10.12132 9.48471 0.00195

three molecular connectivity indices, with better Q,
r, and s values

{Xvon: D: %% 1%} Q =0.129, F = 85, r = 0.965,
s=7.9, W=75u= (48,586,654, 54, 4.1)

For comparison, the best LCCI is the following linear
combination, which consists of the three y indices of
the prior mixed combination

{D, %, %} Q=0.092, F=57,r=0.932,s = 10,
WC=5.7,u=(6.1,7.1, 4.3, 53)

E. Four Properties of Organophosphorus
Compounds

The modeling of the four experimental properties
of organophosphorus compounds of Tables 7 and 8,
which was already satisfactorily achieved by quan-
tum theoretical based indices,?** has been achieved
here with two different minimal basis sets. For the
n = 17 molar refractivities, MRp, the n = 14 refrac-
tivity indices, n?%, and the n = 14 density d, %
values, a minimal basis set of five molecular con-

nectivity indices, {D,%;, 1y, %", x, was used. For the
n = 14 retention indices for paper chromatography,
Ry, the minimal basis set of four indices, {%, Yy, 1",
xtr, was instead used. As indices D and DY as well as
the % and %y indices for all these compounds differ
from each other by a constant term, we can then
choose to neglect DY and %V throughout the given set
of compounds as well as y;' as r(y: x:¥) = 1 and retain
xt only. The further reduction of the basis set for R¢
is based on the same reason, i.e., r(D, %) = 1, which
means that one of the indices is redundant. It has
been remarked that the molar refractivity, MRp, and
the retention index, Ry, are properties dependent
more on the size of the molecule while the density,
d4*°, and the refractive index, n?°p, are more shape-
dependent.®* This different quality of these two sets
of properties is reflected by the different modeling of
the molar masses

MRp: Q(M) = 1.3, F(M) = 16 299, r(M) = 0.9994
Ry Q(M) = 45, F(M) = 970, r(M) = 0.994
np>%: Q(M) = 370, F = 163, r(M) = 0.965

d,%: Q(M) = 140, F(M) = 148, r(M) = 0.962

While the first two (more) size-dependent properties
are extraordinarily well modeled by M, the last two
(more) shape-dependent properties are less ad-
equately modeled by M. It will be, nevertheless,
interesting to see (i) if a better description than M
can be found, (ii) which of the connectivity indices is
more size- or shape-dependent, (iii) which index is,
indirectly, the best descriptor for M, and (iv) as
r(*x,¥) = 0.99990, it is then possible to test the
importance of 1x¥ along with the modeling of the four
properties, whose value is contributed by ¢V(P) only.
Thus, the modeling of these two types of physical
properties becomes an interesting objective. To cal-
culate the ¥ values, a 6Y(P) = 2.22 value for the
phosphorus atom has been used.'® The descriptions
of these properties by y indices is excellent and better
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than the description achieved by quantum theoreti-
cally based indices.®* The best single index and the
best LCCI chosen with a full combinatorial approach
for these four properties are

MR, (n = 17)

{°%}: Q=0.554, F=2831, r =0.9974,s = 1.8,
M= 31, u = (53, 8.4)

{%, %} Q =1.980, F = 18116, r = 0.9998,
s=0.5, M= 14, u = (18, 13, 11)

{5} Q = 1.420, F = 18579,
r =0.9996, s = 0.7, = 70, u = (136, 3.5)

Here only the second and third descriptions are
improved compared to the description of the molar
masses. The description starts to worsen if LCCI with
three or more molecular connectivity indices is
performed. The description achieved by term {(®y-
1¥)%5%}, which is composed of the two main indices of
the best LCCI, is spoiled only by the low utility of
the unitary term of the regression, cy = 3.5; all other
statistics are excellent. We choose, in fact, this term
to model MRp, as modeling 17 points with just one
descriptor is a better choice than modeling them with
two descriptors. The correlation vector for the found
term is C = (5.48211, 2.12168). The resulting model-
ing equation can be written as MRp = 5.48-(%-1y)°°
+ 2.12. In Figure 10 the calculated versus the
experimental MRp values are plotted.

R, (N = 14)

{%}: Q =445, F =970, r = 0.9939,
s = 0.022, W= 38, u = (31, 44)

{%, %"}: Q =57.5, F = 809, r = 0.9966,
s =0.017, W= 4.5, u = (3.1, 3.7, 6.8)

{5} : Q = 55.2, F = 1494, r = 0.9960,
s =0.018, W= 52, u = (40, 64)

Here the two-index LCCI is no more optimal as (i)
F(, YY) < F(%), and (ii) an unsatisfactory WlCrenders
this combination even more suspect relative to the
single-index combination, even if this two-index
combination outperforms M in its r and Q value. The
description achieved by the third descriptor, a term
composed by the two indices of the best LCCI, seems
optimal under every insight. Notice the similar y
modeling of MRp and R;. The correlation vector and
modeling equation are C = (—0.02117, 1.04713), R¢
= — 0.02:(%-%¥")°75 + 1.05. The best size-dependent
descriptor and indirectly the best descriptor for the
molar masses seems then to be index, %, which can
thus be considered the molar mass molecular con-
nectivity index, as shown elsewhere.”? For both
properties the modeling achieved with LCCI with
more than two indices is no more reliable. Let us now
inquire into the modeling behavior of the two (more)
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Figure 10. Plot of the calculated (calcd) versus the
experimental (exp) molar refractivities, MRp, for 17 phos-
phoderivatives.

shape-dependent properties.
n?, (n = 14)

{*%}: Q=405 F=195 r=0.971,s = 0.0023,
W= 306, u = (14, 598)

{* x}: Q =579, F =200, r =0.987, s = 0.0017,
M= 134, u = (7.5, 3.6, 390)

{(r20°%: Q =592, F = 418, r = 0.986,
s = 0.0016, L= 650, u = (20, 1280)

The description by the single- and two-index LCCI
are more satisfactory than the description given by
the molar masses. The best LCCI which has only two
indices shows better Q and F values than the single-
index description but an unsatisfactory utility u,
value (3.6). The third descriptor, a term composed
again by the indices of the best LCCI, seems perfect
for the description of this property. We can then
choose the following modeling equation: n?%p = —
0.05(%y+x)°3 + 1.46, whose correlation vector is C =
(—0.0538, 1.45793). The four digits for the s value are
given here to aid in the comparative analysis.

d,?° (n = 14)

{°%1}: Q =143, F =155, r =0.964, s = 0.007,
M= 73, u = (13, 134)

{1Cr )%} Q =171, F =222, r = 0.974,
s =0.006, W= 17, u = (15, 18)

Both descriptions are better than the description
offered by the molar masses. A two-index LCCI,
description, {%, i}, is no more optimal with Q = 156,
F =92, and r = 0.971. Further, multi-index descrip-
tions show unsatisfactory statistical values. A de-
scription offered by the term composed of the first
and second best single indices is the most impressive.
The correlation vector for this term is C = (—4.0719,
5.20933), and the regression equation is d;* =
—4.07(%%)%% + 5.21. The collinearity among the
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indices that belong to the best LCCI for the three
properties is r(%, ) = 0.986 for MRp, r(%, %) =
0.997 for Ry, and r(Yy, o) = 0.844 for n,?°. While the
collinearity among the best indices for the modeling
of Ry is quite strong, the collinearity among the best
indices for n,?° is relatively weak, and nevertheless,
the Rf modeling is much better than ns?° modeling.
Throughout these four simulations we can notice (i)
that notwithstanding the mentioned high correlation,
r(*y,%x¥) = 0.99990, index, Yy is critical for the model-
ing of MRp, n?%,, and d,?°, while a similar role is
played by index V¥ for the modeling of Ry, (ii) the good
description of the four properties by a single descrip-
tor, which has the features of a dominant descriptor,
and (iii) that terms found for these properties are
normally composed of the best indices of the corre-
sponding best LCCI.

All'in all, % index seems the best descriptor of size-
dependent properties, while 'y seems to be the best
descriptor of shape-dependent properties. In fact,
while Yy for ds?° performs Q = 134, F = 136, and r =
0.959 and similar values are obtained by % index,
the modeling of n?°; by % performs Q = 340, F =
138, and r = 0.959. These last values are consistently
worse that the values obtained by 'y. Further, the
fact that the D index is not a good descriptor of any
of these properties shows that it shares no attributes
in common with the molar masses, i.e., it describes
a graph property of its own, and for this reason it
that has been named graph mass index.”* It is
evident that the quality of the modeling of the first
two size-dependent properties is better than the
quality of the modeling of the last two shape-
dependent properties, a fact that is clearly reflected
by the value of the F parameter. Notice that 6V(P) is
not based on a pseudograph representation of the
phosphoorganic molecules; this ‘external’ definition
of a valence delta value will become important in the
next paragraphs.

F. Lattice Enthalpy of Inorganic Salts

Conceptually the definition of a graph and, even
more, of a pseudograph for inorganic salts is quite
problematic and can, in principle, be solved only with
a graph representation of solid ionic structures, a
representation which up to now remains to be
satisfactorily answered. The problem will neverthe-
less be strongly simplified by the aid of pure ‘a
posteriori’ considerations, i.e., the given inorganic
compounds will be modeled using eq 3 for 6¥ and their
graph representation for 9, e.g., the graph for CaCly,
will be written as G(CaCl,) = e—e—e. The use of a
graph representation for the given metal halides is
equivalent to considering these compounds in their
gaseous state. The quality of the achieved modeling
will tells us how far our approximation has been
‘crude’. This procedure, which sharply simplifies the
modeling, shows no minor practical advantages.545°
Further, it should be remembered that there is no
such thing as ‘purely covalent’ molecule or ‘purely
ionic’ crystal; these two categories represent limiting
cases. Thus, the practical application of graph con-
cepts to ionic compounds, even if theoretically ques-
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Table 9. Lattice Enthalpies AH,? at 298.15°K (kJ
mol~?) of 20 Metal Halides (MeX) and Their
Corresponding Molar Masses and Molecular
Connectivity Values®

MeX M AHZ2 DV 0y 1y D?

LiF 259 1037 8 137796 0.37796 4

NaF 42.0 926 7.11111 3.37796 1.13389 3.83333
KF 50.1 821 7.05882 4.50107 1.55839 3.75000
RbF 1045 789 7.02857 6.29404 2.23607 3.70000
CsF 1519 750 7.01887 7.65807 2.75162 3.66667
LiCl 42.4 852 1.77778 2.13389 1.13389 2.83333
NaCl 584 786 0.88889 4.13389 3.40168 2.66667
KCI 74.6 717 0.83660 5.25700 4.67516 2.58333
RbCI 1209 695 0.80635 7.04997 6.70820 2.53333
CsCl 168.4 678 0.79665 8.41400 8.25487 2.50000
LiBr 86.8 815 1.25926 2.96396 1.96396 2.25000
NaBr 102.9 752 0.37037 4.96396 5.89188 2.41667
KBr 119.0 689 0.31808 6.08707 7.09762 2.00000
RbBr 165.4 668 0.28783 7.88004 11.6190 1.95000
CsBr 2128 654 0.27813 9.24407 14.2979 1.91667
Lil 133.8 761 1.15556 3.53546 2.53546 1.90000
Nal 1499 705 0.26667 5.53546 7.60639 1.73333

Kl 166.0 649 0.21438 6.65857 10.4540 1.65000
Rbl 2124 632 0.18413 8.45154 15.0000 1.60000
Csl 259.8 620 0.17442 9.81557 18.4585 1.56667

tionable, has some loose theoretical basis. The tran-
sition between the covalent and ionic bonding type
is not an abrupt transition, and between the two
extreme bonding types, NaF and diamond, there is
a wide region of intermediate cases®®1% to which
most of our metal halides (MeX) belong. Further, it
should not be forgotten that the electrostatic ionic
model for salts is just a model even if, up to date, a
very successful one. The lattice enthalpies, AH,?, of
20 metal halides at 298.15 K of Table 9 can optimally
be modeled only with the introduction of a new index
to the subset of valence molecular connectivity indi-
ces {DY, %", 1yV}. The triviality of the graph for these
metal halides (e—e) renders y indices useless as (i) D
=0y, Iy = ye and (ii) y(MeX;) = y(MeX;), with i = j =
1-20. Thus, the only valuable indices are the yV
indices (*y¥ = %), whose basic parameter, ¢V, has
been ‘pragmatically’ defined (see eq 3). Thus, practi-
cally (i) we do not need a graph representation,
similar to the one used for organic molecules, to
model these compounds, (ii) this modeling becomes
a benchmark for the proposed definition of ¢V, and
(iii) this modeling also becomes a benchmark for the
following new index

D? = 567, = 5,(2"/n)) (38)

Here ZV is the number of valence electrons and n is
the principal quantum number. With this new index,
the set of connectivity indices used to model the given
property of the inorganic halides becomes {y} = {DV,
OyV, 1yv, D?}. Notice that for these compounds ¥ =
xi'. The 6% values of the atoms of some inorganic
compounds are (the corresponding ¢V values are given
in section A.2)

1/2 1/3 1/4 1/5 1/6 7/2 7/3 7/4 7/5

The average interrelation matrix value for this
property with this {y} set is HAH ?:{y}0= 0.68,
while the strongest and weakest interrelated indices

(LiNaKRszFCI Br |)
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are ry(DY, %") = 0.39 and r¢(DY, D?) = 0.91, respec-
tively. These values tell us that in this case our
indices are not excessively interrelated. The best
single index and the best LCCI chosen with the full
combinatorial method are

%% Q=0.015 F=45 r=0.846, s=57, W=17.2
{DY, %"%: Q=0.033, F=115 r=0.965 s=29, W(=19.4
%", %Y, D%: Q=0.043, F=131, r=0.980, s=22, W=6.3

Though Q, F, and consequently r and s statistics
improve all along this series of combinations, the
utility instead worsens. The expansion of the given
set with the introduction of the following terms RV
= (YY)t and SRV = (1¢v)~1° allows us to work with
set {X} = {%", ¥, D% 'RY, 1°RY}. The mean inter-
relation value of this set is rather low, fu(AHZ.:
{X})d= 0.652, and the minimum and maximum
interrelation values are rmin(*yY, **RY) = 0.43 and
rmax(*RY, 1°RY) = 0.981. With this expanded set it is
possible to find the following improved descriptions
obtained with the full combinatorial procedure

{'RY}: Q=0.019, F =72, r = 0.895,
s = 48, =30

{1RV, 1‘5RV}Z Q =0.038, F = 147, r = 0.972,
s =26, =24

{%", D* 'RY}: Q =0.053, F =192, r = 0.986,
s =19, =13

The growing F value throughout this series guaran-
tees the good quality of the found LCXCI, whereas
LCXCI with more descriptors do not achieve a good
modeling. Relative to the preceding description we
notice the much better F and [miCvalues of the single-
index and three-index LCXCI. A trial-and-error
procedure finds a more elaborate molecular con-
nectivity term of eq 39, which shows an interesting
quality Q = 0.037, F = 281, r = 0.969, s = 24, L=
41, u = (17, 65).

0.5
X, = (D)"°+0.2 (39)
MDY +4.2.%Y

Its correlation vector for the regression equals C =
(1911.76, 623.102). The modeling equation that gives
rise to Figure 11 can be written in the simplified form
AH ? =1912-Xn + 623. A linear combination of this
term with ¥ index shows an improved Q value,
worse F and [WiOvalues, and an unsatisfactory u,
value for the new index:

{Xam 2}: Q=0.041, F =173, r = 0.976,
s =24, = 15, u = (10, 2.2, 32)

For a useful comparison, the ratings of molar masses
M are Q = 0.015, F =45, and r = 0.846. The proposed
definition for ¢V 13 seems, thus, optimal even for this
type of modeling.
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Figure 11. Plot of the calculated (calcd) versus the
experimental (exp) lattice enthalpies, AH 2, for 20 metal
halides.

G. Unfrozen Water Content of the Mixed Class of
Amino Acids and Metal Chlorides

Now that we are quite confident with inorganic
compounds, we can venture into the modeling of a
property of a mixed class of compounds, i.e., the
unfrozen water content, UWC, of amino acids (n =
8) and metal chlorides (n = 5) given in Tables 2 and
10, respectively, together with their connectivity
values. The description of this property was first
presented in 1997 and has subsequently been further
refined.5467-6% The simultaneous simulation of amino
acids and of metal chlorides renders the graph
representation of metal chlorides quite useful, as y
values of these compounds are no longer equal to
each other. The consequences of this are that normal
molecular connectivity indices of metal halides are
calculated by the aid of their chemical graph, i.e.,
here we are really using an oversimplified model to
derive the nonvalence y values for the five metal
halides of this modeling. The best single index and
the best LCCI for this property chosen with a full
combinatorial procedure are

{D}:Q=0.71,F=21,r=081,
s=1.2 MO=57

{D", 7}: Q=10.82, F = 14, r = 0.86,
s=1.1, =35

% %Y o 2} Q =2.41, F =61, r = 0.984,
s=0.4, U=5.4

The first two descriptors are unsatisfactory, with the
second one also showing a deteriorating F value. The
last description is somewhat ‘hazardous’ as four
indices are too many to model 13 points. Molar
masses as descriptors for this property perform
rather poorly with Q = 0.44, F = 8.1, and r = 0.651.
A trial-and-error procedure discovers the following
optimal molecular connectivity term with statistical
values better than the corresponding values of the
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Table 10. Unfrozen Water Content UWC (g of H,O/g of MeCl) for Five Metal Chlorides and Their Corresponding

Molecular Connectivity Index Values®

MeCl uwcC D Oy Iy DV OV A 21t 1’

LiCl 6.5 2 2 1 1.7778 2.1339 1.1339 1 1.1339
NacCl 3.0 2 2 1 0.8889 4.1339 3.4016 1 3.4017
KCI 1.8 2 2 1 0.8366 5.2570 4.6752 1 4.6752
CaCl, 4.0 4 2.7071 1.4142 1.6732 5.1832 6.6117 0.70711 3.7485
CuCl, 4.0 4 2.7071 1.4142 1.6325 5.8733 8.1777 0.70711 4.6357

four index LCCI:

Q=279 F=328r=009845s=0.3,
W= 13, and u = (18, 7.6)

1.v

Xuwe = (40)

Dv _ OXV
A somewhat better modeling can be achieved if the
modulus of Xywc is considered, i.e., | Xuwc|, as some
Xuwc Vvalues are negative. Now, with |[Xywc|, we
obtain the following improved statistics Q = 3.14, F
=417,r =0.987,s = 0.3, = 13, u = (20, 5.0). The
correlation vector and the modeling equations are C
= (1.83423, 0.55209) and UWC = 1.83-|Xywc| + 0.55.
Further, while Xywc in combination with yv allows
for improved Q statistics with Q = 3.11, [ Xuywc| term,
instead, is a strict ‘dead-end’ term allowing no
improved combinations.

H. Random Organic Solvents

until now, with the exception of [AA + PP] and
[AA + MeClI] mixed classes, modeling was normally
restricted to rather homogeneous classes of com-
pounds. The fact that mixed classes of compounds
could satisfactorily be simulated with special types
of indices constitutes a good suggestion to model more
complex classes of compounds, especially classes of
compounds that are characterized by different and
strong intra- and intermolecular interactions. Lately,”
modeling of 11 physicochemical properties of a highly
heterogeneous class of compounds has been at-
tempted and for many of them a successful modeling
has been achieved with the introduction of semi-
empirical molecular connectivity terms, i.e., terms,
which include in their definition empirical param-
eters. The modeled heterogeneous class of organic
solvents was composed of saturated, unsaturated,
substituted, unsubstituted, nonpolar, slightly, and
highly polar compounds. These solvents, together
with some of their properties and their molecular
connectivity indices, are collected in Tables 11 and
12, respectively. None of these properties can satis-
factorily be modeled by theoretical y indices or X
terms, as their properties are highly dependent on
noncovalent interactions.

Table 11 also shows the values of the molar masses
and of the dielectric constants of the different sol-
vents, two central properties in this study. These two
properties, either directly or indirectly, together with
ad hoc e-related parameters, which will be used to
describe hydrogen bonds in alcohols and acids, will
be used here to overcome the inherent limitation of
the molecular connectivity indices, which do not
encode van der Waals and hydrogen-bond interac-

tions. As already said in section I1.G (last portion),
the e-related parameters that are derived from the
dielectric constant are (i) ay ~ €/15, truncated at the
first figure and rounded to 0.5 or 0.0, (ii) aon, and
(iii) a.. Parameter aon will be defined in the next
paragraph, and for parameter a., the reader is
referred to ref 70. It will be assumed that for /15 <
1, ay = 1. The values for a,, = 1 are collected in Table
11, first column, in parentheses. Hydrogen bonds in
alcohols and acetic acid contribute a,, = 2, whatever
the value of €/15 is; but for ethylenecarbonate, a,, =
3 has been preferred. This ad hoc noncovalent
parameter, a,, shows the following descriptive power
for the dielectric constant Q = 0.105, F = 250.3, r =
0.895, s = 8.49, and n = 64, which means that it is
not redundant with the dielectric constant.

1. Boiling Point

Let us start with the modeling of the boiling points,
Ty, of n =63 solvents. The modeling due to the molar
M masses, the dielectric € constant, and a,, are quite
misleading with (in ref 70 second and third Q values
are wrongly reported)

M: Q =0.006, F=7.9; e: Q = 0.009,
F=16.4;a,. Q=0.008, F=14.2

If these ad hoc descriptors have to play a role in the
modeling of Ty, then these values tell us that they
should mainly be ¢ and/or a,. The best molecular
connectivity model is achieved by {%V} with Q =
0.013, F = 33.9, r = 0.598, and s = 36.4. The use of
linear combination of molecular connectivity indices
does not improve the modeling. Introduction, instead,
of the following set of semiempirical supramolecular
connectivity indices improves the description sub-
stantially:

{awr}={a,D. a,D", a, %% ayr" aw'z aw 'y,
Xt/aw ’ Xtvlaw} (41)

The rationale for dividing the two last total indices
by a,, has been explained with the set of eq 15. The
improvement in the modeling of Ty, is noticeable both
at the level of the single supraindex as well as at the
level of a two-supraindex description (u values will
be given only for the ultimate best descriptions)

{a,D}: Q = 0.030, F = 183, r = 0.866, s = 29.0

{a, D, x'la,}: Q=0.031, F =98, r = 0.875,
s =28.3

This description can be improved further with the
introduction of the following semiempirical molecular
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Table 11. Properties of Organic Solvents?

solvent M To RI d € u uv
acetone (1.5) 58.1 56 1.3590 0.791 20.7 2.88 330
acetonitrile (2.5) 41.05 82 1.3440 0.786 37.5 3.92 190
benzene 78.1 80 1.5010 0.874 2.3 0 280
benzonitrile (1.5) 103.1 188 1.528 1.010 25.2
1-butanol (2) 74.1 117.7 1.3990 0.810 17.1 215
2-butanone 72.1 80 1.3790 0.805 18.5 330
butyl acetate 116.2 125 1.3940 0.882 5.01 254
CS, 76.1 46 1.6270 1.266 2.6 0 380
CCly 153.8 77 1.4595 1.594 2.2 0 263
Cl-benzene 112.6 132 1.5240 1.107 5.62 287
1Cl-butane 92.6 77.5 1.4024 0.886 7.39 225
CHCls 119.4 61 1.4460 1.492 4.8 1.01 245
cyclohexane 84.2 80.9 1.426 0.779 2.0 0 200
cyclopentane 70.1 50 1.4000 0.751 2.0 200
1,2-dCl—benzene 147.0 179.5 1.5510 1.306 9.9 2.50 295
1,2-dCl-ethane 98.95 83 1.4438 1.256 10.37 1.75 225
dCl-methane 84.9 39.9 1.4240 1.325 7.5 1.60 235
N,N-dM-acetamd (2.5) 87.1 165.2 1.4380 0.937 37.8 3.8 268
N,N-dM-formamd (2.5) 73.1 153 1.431 0.944 36.7 3.86 268
1,4-dioxane 88.1 101 1.4220 1.034 2.2 0.45 215
ether 74.1 34.6 1.3530 0.708 4.3 1.15 215
ethyl acetate 88.1 77 1.3720 0.902 6.0 1.8 260
ethyl alcohol (2) 46.1 78 1.3600 0.785 24.5 1.69 210
heptane 100.2 98 1.3870 0.684 1.92 200
hexane 86.2 69 1.3750 0.659 1.89 200
2-methoxyethanol (2) 76.1 124.5 1.4020 0.965 16.0 220
methy! alcohol (2) 32.0 64.6 1.3290 0.791 32.7 1.70 205
2-methylbutane 72.15 30 1.3540 0.620 1.843
4-M-2-pentanone 100.2 117.5 1.3960 0.800 13.1 334
2-M-1-propanol (2) 74.1 108 1.3960 0.803 17.7
2-M-2-propanol (2) 74.1 83 1.3870 0.786 10.9 1.66
DMSO (3) 78.1 189 1.4790 1.101 46.7 3.96 268
nitromethane (2.5) 61.0 100.9 1.3820 1.127 35.9 3.46 380
1-octanol (2) 130.2 196 1.4290 0.827 10.34
pentane 72.15 35.5 1.3580 0.626 1.844 200
3-pentanone 86.1 102 1.3920 0.853 17.0
1-propanol (2) 60.1 97 1.3840 0.804 20.1 210
2-propanol (2) 60.1 82.4 1.3770 0.785 18.3 210
pyridine 79.1 115 1.5100 0.978 12.4 2.2 305
ttCl-ethylene 165.8 121 1.5056 1.623 2.3
tt-hydrofuran 72.1 67 1.4070 0.886 7.6 1.75 215
toluene 92.1 111 1.4960 0.867 2.4 0.36 285
1,1,2tCltFethane 187.4 47.5 1.3578 1.575 2.41 230
2,2,4-tM-pentane 114.2 98.5 1.3910 0.692 1.94 215
o-xylene 106.2 144 1.5050 0.870 2.568
p-xylene 106.2 138 1.4950 0.866 2.374
acetic acid (2) 60.05 117.9 1.3719 1.049 6.1 12
decaline 138.2 191.7 1.4758 0.879 2.20
dBr-methane 173.8 97.0 2.4970 1.542 7.5 1.43
1,2-dCI-E-en(2) 96.9 60.6 1.4490 1.284 9.2 1.90
1,2-dClI-E-en(E) 96.9 47.7 1.4462 1.255 2.1 0
1,1-dCl-E-en 96.9 31.6 1.4247 1.213 4.6 1.34
dmethoxymethane 76.1 42.3 1.3563 0.866 2.6
dimethyl ether 46.1 —24 5.02
E-encarbonate (3) 88.1 238 1.4250 1.321 89.6 491
formamide (7) 45.0 210.5 1.4475 1.133 109 3.73
methyl chloride 50.5 —24.1 1.3389 0.916 12.6 1.87
morpholine 87.1 128.9 1.4573 1.005 7.4
quinoline 129.2 237.1 1.6293 1.098 9.0 2.2
SO, 64.1 —10.0 1.434 17.6 1.6
2,2-ttCl-ethane 167.8 146.2 1.4868 1.578 8.2 1.3
ttM-urea (1.5) 116.2 176.5 1.4493 0.969 23.1 3.47
tCl-E-en 1314 87.2 1.4800 1.476 34

a Molar mass M (g-mol~1), T, = boiling points (°C), Rl = refractive index (20 °C), d = density (at 20 + 5 °C relative to water at
4 °C), e = dielectric constant, dipole moments, u, in Debye (1D = 1078 esu cm = 3.3356 x 1072 C m), UV = UV cutoff (nm,
wavelength at which absorbance is 1 A for a good LC-grade solvent).®6’Abbreviations: amd = amide, d = di, E-en = ethylen, M
= methyl, t = tri, tt = tetra. T, has been modeled in Kelvins. For values in parentheses, see text.
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connectivity term found by a trial-and-error proce-
dure

(aW-D)°'7
%e(@y) '+ 15

which shows Q = 0.031, F =198, r = 0.87, s = 28.1,
and [LU= 22. The improvement relative to the single
supraindex is not impressive, but now the following
enhanced description with linear combinations of Xgp
and {aw-y} supraindices can be obtained. Here Xgp
is a dominant descriptor, which allows the reduction
of the total combinatorial search into a forward
selection search.

{Xgp» 2:/2,}: Q = 0.034, F = 119, r = 0.894,
s =26, =13

{Xgp» i1y, 2/a,}: Q = 0.035, F = 85,
r=0.902, s = 25, W= 6.6

{Xap: 1013, 143, €, M}: Q = 0.039, F = 63,
r=0.920, s = 23, M= 4.6

The last description, even if its F and WO have
worsened throughout the modeling, can be used to
model the boiling points of the given solvents. The
utility vector of the last combination u = (4.9, 1.8,
2.7, 3.3, 2.8, 12.3) is somewhat misleading but can
further be enhanced, up to =11 and u; = 17, with
the introduction of orthogonalized descriptors.”® The
kind of descriptors involved in the modeling allow us
to understand the basis of this property. While Xgp
is made up of nonvalence molecular connectivity
indices, which are shape-dependent, the improve-
ment caused with the introduction of the total
valence supraindex y/a,, underlines the importance
of a pseudograph representation for these molecules.
At the same time, the indirect influence of a,, and
further of € shows that subtle electrostatic intermo-
lecular interactions are also important for T,. The
additional improvement caused by the molar mass
M, as without M we have Q =0.037, F =69, and r =
0.909, seems to tell us that bulk factors contribute
in some minor way to Ty,. Previous studies on boiling
pointst®1102 of some nonpolar or slightly polar com-
pounds have underlined the importance of polariz-
ability and further of shape and size (molar volume)
on Ty,. Molar mass can indirectly help, through
density, to model the size factor, which determines
the boiling points. Clearly, better accuracy can be
achieved and has been achieved with more homoge-
neous classes of compounds and with different
molecular structure indices, like the recent modeling
of C,—C,o alkenes and cycloalkenes, C;—C, and
C;—C,4 chlorofluoroalkenes, and C, chlorofluoro-
alkenes,*0103.104 while modeling based on a linear
combination of more sophisticated nontopological
indices recently achieved a very interesting descrip-
tion of a wide set of boiling points and of critical
transition temperatures.5?

Xgp = (42)

2. Refractive Index

The refractive index, Rl or ny, is related to the
molar refractivity, Rn, through the equation Ry, =
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M(n,>—1)/d(n,? + 1), where M stands for molar mass
and d for density. The best descriptor for the n = 61
points of this property is {y:"} which rates Q = 6.00,
F =50, r=0.676,s = 0.11, while M, ¢, and a,, show
the following descriptive power

Q(M) = 3.52, F(M) = 17; Q(¢) = 0.47,
F(e) = 0.31; Q(a,) = 0.68, F(a,) = 0.63

From these values and from the relation which
relates Ry, to RI, it should be expected that M should
play some role in the description of RI. The following
LCCI, where ;' is a dominant index, offers a better
description for Rl than the aforementioned empirical
parameters

{x), D}:Q=10.2, F=72,r=0.844,s = 0.08

{" 10 D", %, 84} Q = 14.8, F = 60,
r =0.919, s =0.06

The following dominant Xg, molecular connectivity
term alone can explain most of the modeling with Q
= 13.6, F = 256, r = 0.902, s = 0.07, [w= 90

Xe1 = (Xtv)3/(Xt)2'5 (43)

This modeling can be improved with the following
linear combinations, where the five-index combina-
tion includes the empirical parameters M and ay,

{Xq, D}: Q = 16.7, F = 198, r = 0.932,
s =0.06, M= 33

{Xap, D, %% M, a,}: Q =19.9, F = 109,
r=0.953, s = 0.05, =11

Eliminating from the modeling the two strong out-
liers, CS, and decaline, i.e., working with 59 points,
the single- and multi-index descriptions improve to

{Xg}: Q=14.7, F =290, r = 0.914,
s =0.06, =94

{Xg, D}: Q = 20.8, F = 289, r = 0.955,
s =0.05, = 38

{Xap D, %, a,, M}: Q =30.0, F = 242,
r=0.979, s = 0.03, =16

Relative to the significant improvement in Q, the
small decrease in F throughout this series can be
neglected while the overall utility continues to be
meaningful. The correlation and utility vectors of the
last combination are C = (0.02135, 0.02478, —0.06271,
0.02591, 0.00103, 1.32902) and u = (24, 10, 6.7, 5.0,
4.8, 60). The modeling equation, to simplify matters,
can be written in the following algebraic form: Rl =
aXg + b-D + c% + day + eM + f, where
regression parameters a—f are to be taken from the
given correlation vector C.

The modeling of RI, thus, requires (i) an ay
parameter which is not embedded in a term, (ii) a
Xgri term made up of two total molecular connectivity
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indices, (iii) two nonvalence D and % indices, and (iv)
M to help to further improve the description, which
without M lowers to Q = 25, F = 212, r = 0.970.
Intermolecular interactions seem to play a lesser role
here than in the T, modeling. Notice that up to the
rather good description with combination {Xg,, D, %]},
Q =233, F=242,r =0.964 for n =59 and Q =
17.9, F = 147, r = 0.941, s = 0.05 for n = 61, no
intermolecular a,, or bulk M descriptors are required.

3. Density

Both single index and LCCI show no interesting
modeling for the n = 62 points of this property. The
best single index for the density is {y:} with Q =
1.64, F = 12, r = 0.41, s = 0.25. Descriptors M, e,
and a,, perform as follows

Q(M) = 2.75, F(M) = 34; Q(¢) = 0.21,
F(¢) = 0.20; Q(a,) = 0.16, F(a,) = 0.11

That is, descriptor M rates better than y;¥ and should
be expected to play an interesting role in the descrip-
tion of this property. The importance of M is not
unexpected, as densities are strictly related to molar
masses. In fact, the following linear combination of
a molecular connectivity index and M show a re-
markable modeling

{%". M}: Q=9.71, F = 213, r = 0.937, s = 0.10

An improved description can be obtained with the
following set of molar mass-based y indices, where
the total indices are, instead, multiplied as they
describe an inverted domain relative to the other
indices

{x*M™*} = {D/M, D"IM, %/M, °“IM, *y/M,
YIM, e M, 1M} (44)

These indices offer a significant single-index and
multi-index modeling, where the single index is a
dominant descriptor which transforms the full com-
binatorial search into a forward selection search

{%"/M}: Q = 8.88, F = 357, r = 0.925, s = 0.10

{%"IM, ZIM}: Q = 10.9, F = 270, r = 0.949,
s =0.09

{%IM, *yIM, DIM}: Q = 15.9, F = 380,
r=0.975,s = 0.06

There is no improvement with more descriptors. The
best overall description is achieved with the following
semiempirical molecular connectivity term, derived
by a trial-and-error procedure and centered around
%%¥and M. This term is a dead-end descriptor, as no
further improvement can be achieved with a linear
combination of this and other indices of any set

Xd — OXV'(:LX + Xt)0.4/Ml.4 (45)

Its statistics are Q = 15.7, F = 1122, r = 0.974, s =
0.06, 0= 48, a quite good score for a single
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Figure 12. Plot of the calculated (calcd) versus the
experimental (exp) densities, d, for 62 random organic
solvents.

descriptor of 62 points. Its correlation, utility vectors
and modeling equations are C = (—96.3939, 2.10663),
u = (34, 63), and d = —96.39-Xq4 + 2.11. In Figure
12 the calculated versus the experimental density
values are plotted. We can notice from the utility
vector that the single utility of the X4 term and of
the unitary term, U, are excellent. The term given
by eq 45 is a special case of a more convoluted
semiempirical term given by eq 46, in which the
dielectric constant also plays a direct role

_ OXV'(lX + Xt)0.4
M 4 (0.12¢)*2

I

d

(46)

This term rates even better than term 45, with Q =
16.2, F = 1182, and r = 0.976. The small loss in
quality of term 45 is more than compensated by its
higher simplicity. Before closing this modeling, let
us notice that around %y is also centered a term
which perfectly models the side-chain volume of
amino acids, a property that surely has something
to do with density.

4. Cutoff UV Values

The simulation of n = 37 UV cutoff values starts
very badly with index {D"}, whose main statistical
values are Q = 0.005, F = 2.5, r = 0.259. With normal
y indices there is no way to improve this poor
modeling, which seems to mimic the bad modeling
that can be obtained with M, ¢, and ay

Q(M) = 0.002, F(M) = 0.26; Q(¢) = 0.003,
F(e) = 0.73; Q(a,,) = 0.0002, F(a,)) = 0.004

Even the introduction of the following type of semi-
empirical €/a,-indices, which will later be used, does
not improve the modeling
{(elay)x} =
{e:Dla,,, eD"la,,, e yla,,, € 'la, e yla,,
118y rawle 1iaulet (47)

In fact, the main statistics of the best single ¢/a,-
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Table 12. Molecular Connectivity Indices for Compounds of Table 11
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solvent D DY Oy OV Iy Ly 2t 2t

acetone 6 12.0 3.57735 2.90825 1.73205 1.20412 0.57735 0.20412
acetonitrile 4 10.0 2.70711 1.94721 1.41421 0.72361 0.70711 0.22361
benzene 12 18 4.24264 3.46410 3 2 0.12500 0.03704
benzonitrile 16 28 5.81999 4.33397 3.93185 2.38429 0.07217 0.00717
1-butanol 8 12 4.12132 3.56853 2.41421 2.02333 0.35355 0.15811
2-butanone 8 14 4.28446 3.61536 2.27006 1.76478 0.40825 0.14434
butyl acetate 14 24 6.40578 5.43782 3.77006 2.90403 0.14434 0.02946
CS, 4 5.33333 2.70711 2.94949 1.41421 1.22474 0.70711 0.75000
CCly 8 7.11112 4.50000 5.03557 2.00000 2.26778 0.50000 0.82653
Cl-benzene 14 19.7778 5.11288 4.52064 3.39385 2.47763 0.10206 0.03637
1Cl-butane 8 7.77778 4.12132 4.25521 2.41421 2.50889 0.35355 0.40089
CHCls 6 5.33334 3.57735 3.97903 1.73205 1.96396 0.57735 0.84169
cyclohexane 12 12 4.24264 4.24264 3 3 0.12500 0.12500
cyclopentane 10 10 3.53553 3.53553 2 2 0.17678 0.17678
1,2-dCl-benzene 16 21.5556 5.98313 5.57718 3.80453 2.96124 0.08333 0.03571
1,2-dCl-ethane 6 5.55556 3.41421 3.68200 1.91421 2.10357 0.50000 0.64286
dCl-methane 4 3.55556 2.70711 2.97489 1.41421 1.60357 0.70711 0.90913
N,N-dM-acetamide 10 18 5.15470 4.35546 2.64273 1.82216 0.33333 0.09129
N,N-dM-formamide 8 16 4.28446 3.43281 2.27006 1.38833 0.40825 0.10541
1,4-dioxane 12 20 4.24264 3.64492 3 2.15470 0.12500 0.04167
ether 8 12 4.12132 3.82246 2.41421 1.99156 0.35355 0.20412
ethyl acetate 10 20 4.99156 4.02360 2.77006 1.90403 0.28868 0.05893
ethyl alcohol 4 8 2.70711 2.15432 1.41421 1.02333 0.70711 0.31623
heptane 12 12 5.53553 5.53553 3.41421 3.41421 0.17678 0.17678
hexane 10 10 4.82843 4.82843 2.91421 2.91421 0.25000 0.25000
2-methoxyethanol 8 16 4.12132 3.26968 2.41421 1.51315 0.35355 0.09129
methyl alcohol 2 6 2 1.44721 1 0.44721 1 0.44721
2-methylbutane 8 8 4.28446 4.28446 2.27006 2.27006 0.40825 0.40825
4-M-2-pentanone 12 18 5.86181 5.19271 3.12590 2.62063 0.23570 0.08333
2-M-1-propanol 8 12 4.28446 3.73167 2.27006 1.87918 0.40825 0.18257
2-M-2-propanol 8 12 4.5 3.94721 2 1.72361 0.5 0.22361
DMSO 6 8.66667 3.57735 3.63299 1.73205 2.94948 0.57735 0.5
nitromethane 6 18 3.57735 2.26371 1.73205 0.81236 0.57735 0.07454
1-octanol 16 20 6.94975 6.39696 441421 4.02333 0.08839 0.03953
pentane 8 8 4.12132 412132 2.41421 2.41421 0.35355 0.35355
3-pentanone 10 16 4.99156 4.32246 2.80806 2.32544 0.28868 0.10206
1-propanol 6 10 3.41421 2.86143 1.91421 1.52333 0.5 0.22361
2-propanol 6 10 3.57735 3.02456 1.73205 1.41290 0.57735 0.25820
pyridine 12 20 4.24264 3.33397 3 1.84973 0.12500 0.02869
ttCl-ethylene 10 111111 5.15470 5.53557 2.64273 2.51778 0.33333 0.41326
tt-hydrofuran 10 14 3.53553 3.23668 25 2.07735 0.17678 0.10206
toluene 14 20 5.11288 4.38675 3.39385 2.41068 0.10206 0.03208
1,1,2tCltFethane 14 31.3333 7 5.53557 3.25 2.51778 0.25 0.01968
2,2,4-tM-pentane 14 14 6.78446 6.78446 3.41650 3.41650 0.20412 0.20412
o-xylene 16 22 5.98313 5.30940 3.80453 2.82735 0.08333 0.02778
p-xylene 16 22 5.98313 5.30940 3.78769 2.82137 0.08333 0.02778
acetic acid 6 16 3.57735 2.35546 1.73205 0.92773 0.57735 0.09129
decaline 22 22 6.81155 6.81155 4.96633 4.96633 0.02083 0.02083
dBr-methane 4 2.51852 2.70711 4.63502 1.41421 2.77746 0.70711 2.72740
1,2-dCl-E-enz 6 7.55556 3.41421 3.42248 1.91421 1.64264 0.5 0.42857
1,2-dCl-E-enE 6 7.55556 3.41421 3.42248 1.91421 1.64264 0.5 0.42857
1,1-dCl-E-en 6 7.55556 3.57735 3.47489 1.73205 1.48745 0.57735 0.45457
dmethoxymethane 8 16 412132 3.52360 2.41421 1.39385 0.35355 0.11785
dmethyl ether 4 8 2.70711 2.40825 1.41421 0.81650 0.70711 0.40825
E-encarbonate 10 26 4.99156 3.04817 2.77006 1.27581 0.28868 0.01521
formamide 4 12 2.70711 1.56295 1.41421 0.56904 0.70711 0.13608
methyl chloride 2 1.77778 2 2.13389 1 1.13389 1 1.3389
morpholine 12 18 4.24264 3.73667 3 2.28446 0.125 0.05103
quinoline 22 34 6.81155 5.48867 4.96633 3.26450 0.02083 0.00239
SO, 4 13.6667 2.70711 1.59109 1.41421 0.63245 0.70711 0.12910
2,2-ttCl-ethane 10 9.11112 5.15470 5.69027 2.64273 2.95194 0.33333 0.55102
ttM-urea 14 24 6.73205 5.80268 3.55342 2.44019 0.19245 0.04082
tCl-E-en 8 9.33334 4.28446 4.47903 2.27006 2.07722 0.40825 0.42085

index, {e:DV/ay}, are Q = 0.01, F = 12, r = 0.504. A
closer look at this modeling lets us notice that leaving
out 12 nonalcoholic solvents (with asterisks in Table
13) and introducing for alcohols the parameter aoy
= 2 + €/15, truncated at the second figure, instead
of ay, then the modeling of the remaining n = 25
points with indices of set of eq 47, where aon replaces
aw, improves consistently. For n = 25 points, M, ¢,

and apn continue to be poor descriptors with

Q(M) = 0.007, F(M) = 1.5; Q(¢) = 0.007,
F(e) = 1.9; Q(apy) = 0.006, F(agy,) = 1.4

Index { DV} continues to be a bad descriptor with Q
= 0.009, F = 2.9, and r = 0.33. The best index, {e-
D/aon}, now guarantees a satisfactory model, while
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Table 13. Experimental (exp) and Calculated (calcd) UV Cutoff Values of n = 37 Solvents
solvent UVexp UVealed solvent UVexp UVaicd solvent UVexp UVaicd

acetone* 330 269.9 1,2-dCl-benzene 295 310.6 methyl alcohol 205 215.2
acetonitrile* 190 247.5 1,2-dCl-ethane 225 212.2 4-M-2-pentanone 334 307.4
benzene* 280 213.7 dCl-methane 235 218.4 DMSO 268 250.9
1-butanol 215 219.8 N,N-dM-acetamd 268 331.0 nitromethane* 380 328.9
2-butanone 330 307.8 N,N-dM-formamd 268 303.1 pentane* 200 264.0
butyl acetate 254 247.8 1,4-dioxane 215 217.2 1-propanol 210 219.8
CSy* 380 299.2 ether 215 222.2 2-propanol 210 227.6
CCly* 263 254.1 ethyl acetate 260 250.1 pyridine* 305 325.2
Cl—benzene* 287 250.6 ethyl alcohol 210 219.7 tt-hydrofuran* 215 247.4
1Cl—butane 225 216.5 heptane 200 228.0 toluene* 285 217.3
CHCl; 245 2254 hexane* 200 242.1 1,1,2-tCltethane 230 236.4
cyclohexane 200 220.9 2-methoxyethanol 220 228.3 2,2,4-tM-pentane 215 240.5
cyclopentane 200 229.9

*Twelve solvents not included in the optimal simulation are denoted by an asterisk.

linear combinations achieve no further improvement
{e:Dlagy }: Q=0.063, F =139, r =0.926,s =15

A trial-and-error search procedure discovers the
brilliant semiempirical term of eq 48 centered around
DV, aon, and € parameters. The full statistical values
of this term that can be used to model the n = 25
UV points are Q = 0.104, F = 380, r = 0.971, s =
9.3, = 42

Xy = e[(D")" — 0.0580,1/(80)™°  (48)

Linear combinations of this term with the supra-
indices of eq 47 (with apy instead of a,) show
interesting improvements in Q, r, and s

{Xov €M lagy , €y lagy}: Q = 0.127, F = 190,
r=0.982,s=7.7, = 42

The following correlation vector and modeling equa-
tion based on the single term of eq 48 can be used to
model the UV cutoff values, C = (1.26155, 192.494),
UV = 1.26-Xyy + 192. The utility vector of the
parameter of the linear regression, u = (20, 64),
shows the very good utility of each parameter of the
regression.

Now, let us reintroduce the 12 strong outliers,
excluded from the previous modeling, and handle the
n = 37 solvents, with indices of set 47 and let us
calculate their UV cutoff values with the optimal
combination, {e:D/ay, e:DV/aw, e*tylaw, yi'awle}, whose
statistical values are Q = 0.019, F = 16, and r = 0.70.
This rather poor modeling is nevertheless able to
predict satisfactory UV cutoff values for the n = 37
points, as can be seen in Table 13. This is to say that
even without extraordinary statistics, it is possible
to obtain Py 4 Values that are not quite absurd.

5. Dipole Moment

The modeling of the polarity of solvents started
soon after the introduction of molecular connectivity
indices,® and the proposed descriptor for their mod-
eling was based on the %" index. It is interesting to
notice that also for the modeling of the dipole moment
of the n = 35 solvent molecules of Table 11, the 1y
index is the best single index with Q = 0.17, F = 1.8,
r = 0.23, s = 1.3. This is evidently a rather poor

modeling and is similar to the modeling achieved by
M, €, and ay

Q(M) = 0.18, F(M) = 1.9; Q(¢e) = 0.74,
F(e) = 33 Q(a,) = 0.6, F(a,) = 25

From these ratings we can notice that ¢ should play
a consistent role in the modeling of this property.
Introduction and use of the following set of semi-
empirical descriptors improves the description con-
sistently

{en} ={eD, eD", &%, %", ey, ey, xd€, xi'le}
(49)

The following single- and a two-index combination
are, in fact, interesting

{¢%}:Q=1.06,F=68,r=0.825=08
{e%, 7€} Q=1.35,F =55,r=0.88,5s=0.7

With more descriptors the modeling starts to worsen.
The only decisive improvement is obtained with the
following semiempirical term, which is strongly de-
pendent on € and on DY and whose statistical values
are noteworthy: Q =2.12, F=272,r =0.94,s = 0.4,
W= 9.7

0.45

4 —
X, = (eD 1.9D (50)

2.5D" — ¢y,

Its correlation and utility vectors are C = (1.43421,
—0.46761), u = (17, 3). The modeling equation can
succinctly be written as g = 1.43-Xu — 0.47. The
description of this property can further be improved
at the Q, r, and s level with the following combination

{X, %} Q=224 F=151,r=00951,s=0.4,
W= 7.4

|. Modeling and Cis/Trans Isomerism

One of the major problems in chemical graph
theory has been to differentiate between different
conformers of a molecule such as cis and trans
isomers. Two different solutions have been pro-
posed: one™8 based on metric rather than on
topological considerations and the other®® based on
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topological considerations. This last solution centers
its attention on virtual ring fragments from which it
is possible to derive a specific y descriptor as is
explained in section D of this review. For a better
understanding of this cis/trans procedure, let us
consider the hexatriene 1—-6 graphs of Figure 3,
where we notice that the delta vector of the central
four atoms is 6 = (2, 2, 2, 2) while the corresponding
olo" vector for graphs 2 and 3, which can give rise to
only one four-membered virtual ring fragment each,
are 0/0"(2) = (3, 2, 2, 3) and 0/6"(3) = (3, 2, 2, 2).
Graph 4 can, instead, give rise to two identical four-
membered virtual ring fragments whose 6/6" vector
is 6/0(4) = (3, 3, 2, 2). Here the second 3 is due to
the adjacent virtual ring. Further, graph 5 can give
rise to two four-membered virtual ring fragments
whose 0/6" vectors are 6/6"(5) = (3, 2, 2, 3) and 6/6"(5)
= (3, 2, 2, 2), and finally, graph 6 can give rise to
three four-membered virtual ring fragments whose
0lo" vectors are 6/6"(6) = (3, 2, 2, 3) and 6/6"(6) = (2,
2, 2, 3), where this last vector is taken twice. We will
briefly review the modeling power of the proposed
index for two different physicochemical properties of
a set of olefins: the boiling point, Ty, of 12 olefins and
the molar refractivity, MRp, of 8 olefins, whose
experimental values together with the corresponding
crucial molecular connectivity indices, 'y and y., are
given in Table 14. The modeling of T, and MRp with
the normal 1y index and with the y.: index for n = 12
and 8 points, respectively, shows the following results

Ty

{%}: Q =0.216, F = 1593, r = 0.99688, s = 4.6,
W= 30, u = (40, 19)

{x}: Q =0.217, F = 1600, r = 0.99689, s = 4.6,
W= 30, u = (40, 19)

MRy

{'}: Q=14.1, F = 68476, r = 0.99996, s = 0.07,
W= 140, u = (262, 18)

{x} Q =21.5, F = 160426, r = 0.99998,
s = 0.05, M= 214, u = (401, 28)

The small differences in statistical values between
1y and y in modeling the boiling points can be
ascribed to the very small and random A difference
between the T, values of the cis and trans isomer.
In fact, for the boiling points, A ranges from —0.7
to 1.2, with an average of A= —0.05, excluding
the consistent difference between trans- and cis-
butene. For the molar refractivity there is no such
random variation and the MRp value of the cis isomer
is always smaller than the corresponding trans value
with an average [A[]= 0.1225.

In Table 14 we notice that trans-2-octene, trans-
3-octene, and trans-4-octene as well as cis-3-octene
and cis-4-octene isomers show the same y. values.
This fact means that the y.: connectivity index is not
able to distinguish between the different positional
isomers of the given octenes. We will test the follow-
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Table 14. Calculated 'y and y.: Values Together with n
= 12 Experimental Boiling Points, T, (°C), and n =8
Molar Refractivity, MRp, Points of Cis(c)/Trans(t)
Olefins (taken from ref 88)

olefins Iy At (a/p)" To MRp
t-2-butene 1.91421 1.91421 0.88
c-2-butene 1.91421 1.89859 0.0625 3.7

t-2-pentene  2.41421 2.42421
c-2-pentene  2.41421 2.40571 0.03125

t-3-hexene 2.91421 2.91421 67.5 29.72
c-3-hexene  2.91421 2.90958 0.00137 66.85 29.61
t-2-octene 3.91421 3.91421 123.4

c-2-octene 3.91421 3.90571 0.003906 124.6

t-3-octene 3.91421 3.91421 122.4 39.04
c-3-octene 3.91421 3.90958 0.000152 122.3 38.91
t-4-octene 3.91421 3.91421 121.4 39.05
c-4-octene 3.91421 3.90958 0.000015 121.7 38.92
t-5-decene 491421 4.91421 170.2 48.34
c-5-decene  4.91421 4.90958 1077 169.5 48.22

ing positional cis/trans connectivity index y.(p),
defined in eq 51, which takes into account the
different positions of the double bond in the given
compounds. Such a test only has a wide orientating
value as the properties of three different octene
isomers only are known

Zet(P) = 2 — (A/p)" (51)

where p stands for position and n for the length of
the chain, i.e., number of carbon atoms. In the third
column of Table 14 are reported the (1/p)" values.
From eq 51 and from found (1/p)" values, we notice
that the more the double bond shifts toward the
molecule midpoint, the more (1/p)" decreases and the
more y.(p) corresponds to y... The statistical perfor-
mance of the newly defined y.(p) index is

T,. Q=0.223, F = 1687, r = 0.997,
s =4.5, = 30, u = (41, 20)

MRy Q = 22.4, F = 173576, r = 0.99998,
s = 0.045, W= 223, u = (417, 29)

The new positional indeXx, y«(p), is thus able to
improve in a small but noticeable way the modeling
of both properties.

J. Orthogonal Descriptors

In section H orthogonal descriptors were intro-
duced; let us now, then, discuss an example of how
these types of descriptors work. The property chosen
is the lattice enthalpy of metal halides, treated in
section F. The best descriptor of this property is a
linear combination made up of a normal y index, a
z-based index, and a molecular connectivity term, i.e.,
{%, D? 'R}. Even if these indices are not highly
correlated, with r(%",D? = 0.46, r(°%",'RY) = 0.69, and
r(D?, 'RY) = 0.66, the introduction of the correspond-
ing orthogonal indices brings some practical advan-
tages, which, with higher correlated indices, are of
paramount importance. The first step of the orthogo-
nalization procedure is to rewrite the descriptor
vector in a sequential order, i.e., the first best index
followed by the second best index and then by the
third best index. The reordered vector is X = (*RY,
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0y, D?, Up), and its utility and correlation vectors are
u=(54,7.7, 6.6, 30) and C = (64.4373, —20.1665,
54.5942, 719.386). Now, the first orthogonal index is
equal to the first normal index, 'Q = 'RY, and
Randi¢'s orthogonalization procedure goes by or-
thogonalizing in a sequential way %" — 2Q and D* —
3Q (see section H). Even if the unitary term, Uy = 1,
does not change, its regression parameter, uy, nev-
ertheless changes in the orthogonalized regression.
The regression and utility vectors of the orthogonal
vector, Q = (1Q, 2Q, 3Q, Uy), thus derived are C(Q)
= (160.628, —20.1725, 54.5942, 682.282) and u(f2)
= (22, 7.7, 6.6, 131). It can readily be noticed that
WCmproves from 12 to 52 and that this improvement
is mainly due to the first index and to the unitary
index Up. The first index is thus confirmed as the
dominant descriptor, and the sequential ordering of
the utilities show the importance of each descriptor,
because now the orthogonal regression is stable, i.e.,
C(€2) vector values are constant under inclusion or
deletion of a new index. The new regression equation
has not only the same good quality of the parent
regression, but also an enhanced utility and a total
stability. Further, to derive the orthogonal regression
equation, i.e., to derive the C(Q) values, there is no
need to calculate the values of the orthogonal indices
because each C;(Q2) can be derived by the aid of the
sequential regressions obtained by adding each time
the next best y index and retaining the regression
parameter of this index. Let us see in detail how this
powerful and automatic stepwise method works with
the AH,? case. The stepwise modeling regressions,
starting with descriptor 'RV (eq 52), adding next index
OV (eq 53), and finally index D? (eq 54) and including
explicitly the unitary term, Uy, to render things
easier, are

160.628-'R" + 682.282U, (52)
106.517-'RY — 20.2175-%" + 818.387U, (53)

64.4373-'R" — 20.1665-%" + 54.5942D* +
719.386U, (54)

Now, if these regression parameters are compared
with the aforementioned C;(Q2) values of the orthogo-
nal correlation vector C(Q) = (160.628, —20.1725,
54.5942, 682.282), it is at once evident how the
orthogonal correlation vector can be ‘constructed’
without even deriving the specific iQ values (here i
= 1-4 and “Q = Uop). From eqs 52—54 it is obvious
that (i) in stepwise y- and/or X-regressions ci(y) or
ci(X) changes with the inclusion of the next descrip-
tor, (ii) ci(R), instead, remains constant, and (iii) the
parameter of the unitary index is the parameter, cy,
of the single-y or -X regression made up of the best
single descriptor plus Uy. This strategy is evident
with the third descriptor, where the regression
parameter both in the normal and orthogonal de-
scription are the same, because this is the last added
descriptor. The importance of the interrelation be-
tween descriptors is underlined by the similarity of
the second regression parameter in both normal and
orthogonal representations. The low interrelation
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value between %" and D? indices (r = 0.46) renders
the introduction of the third index, D?, in eq 53 nearly
unnoticeable for the correlation parameter of the
second % index that remains practically constant.
Instead, the limited interrelation between 'RY and %V
(r = 0.69) and between 'RY and DZ (0.66) is enough
to render the regression parameters of 'RY and Ug
seemingly ‘random’ with the addition of the next
descriptor.

IV. Recent and Alternative Elaborations

Chemical graph theory and molecular connectivity
have also developed along other lines. An already
cited book,® together with other publications,:105-109
constitute a quite exhaustive review on QSPR/QSAR
methodologies not included in the present review.
Concerning molecular connectivity theory, some in-
teresting aspects have been developed during the
past years. One of the major concerns of molecular
connectivity, the meaning of y indices, has recently
been worked out around the concept of bimolecular
accessibility,™° while variable connectivity indices,
introduced in 1992, have further been developed
during recent years.!1"115 Furthermore, molecular
connectivity descriptors based on line graphs and
molecular connectivity edge indices with optimum
exponent!!6-11° gre starting to be used as descriptors
in QSAR/QSPR studies, where a line graph L(G) of
a graph G is a graph derived from G in such a way
that the edges in G are replaced by vertexes in L. It
should here be noticed that the trial-and-error con-
struction procedure of molecular connectivity terms
indirectly provides descriptors with optimized expo-
nents. Along a somewhat different line of reasoning,
but always based on molecular connectivity chemical
graph concepts, a new molecular structure descriptor,
known as the electrotopological E state has recently
been developed,*?® which seems quite powerful in
predicting the activity and properties of drugs. In a
different but very fruitful perspective new graph,
concepts have been developed which are able to
describe chemical reactions and their intrinsic mech-
anisms.'?! Finally, a recent publication in Nature'??
cannot be forgotten, which uses topological graph
descriptors for the rational design of immunosup-
pressive compounds. This last publication practically
shows the usefulness of topological indices in filtering
a huge mass of compounds (300 000) in order to
design a compound whose activity is about 100 times
the activity of the initial lead compound.

V. Conclusion

The procedure outlined throughout this review,
which is practically focused on the passage from
molecular connectivity indices to molecular con-
nectivity terms, can be defined as heuristics, if for
heuristics it is meant a procedure that provides aid
or direction in the solution of a problem. This
heuristics is mainly based on concepts derived from
the chemical graph theory, which, like every theory,
is set up on a set of rules that define boundaries and
specify how to be successful at and within these
boundaries. Success is measured by the problems
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that can be solved using these rules. What we have
put together throughout this work is a scheme with
a set of rules. The scheme involves the construction
of molecular connectivity indices or terms, their
linear combinations, and eventual changes that
should be done to meet the requirement to model
properties of different classes of compounds. It is set
up this way because we have no way to calculate in
a direct, easy, and straightforward way the values
of the properties. The remarkable thing about this
scheme is its generality. It seems to apply equally
well to amino acids and inorganic salts, to purines
and pyrimidines, to alkanes, to mixed classes of
compounds, and to a highly heterogeneous class of
compounds. It is far easier than quantum mechanical
methods, even if it does not have their physical
charisma and their mathematical rigor, but it is
extremely practical. Plainly, it just works. We can
never be definitely sure that it will always work,
since heuristics are rather problem-specific, but on
the basis of the results obtained up to now, we are
rather confident that with it one can try all sorts of
modeling and that is its use.
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VII. Glossary

congruence two or more geometric figures are congruent
if they differ only in location in space

two geometric figures are similar if one is the
enlargement of the other, i.e., two similar
polygons have corresponding angles equal
and proportional corresponding sides. A
less rigorous definition of similarity well-
suited for chemical applications can be
found in ref 123

constructed with the set of topological dis-
tances, i.e., the number of connections in
the shortest path between atoms i and j.
Cyclic graphs present special problems
since the distance between two points may
be traversed along more than one path

AA amino acids, normally natural amino acids

BP boiling points

CD crystal density

LCCI linear combination of molecular connectivity

indices

similarity

distance
matrix
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LCOCI linear combination of orthogonal molecular
connectivity indices

LCRCI linear combination of reciprocal molecular
connectivity indices

LCSCI linear combination of squared molecular con-
nectivity indices

LCXCI linear combination of special molecular con-
nectivity indices

MC molecular connectivity

MCI molecular connectivity indices

MeCl metal chlorides

MP melting points

MRp molar refractivity

MeX metal halides

MON motor octane number

pl pH at the isoelectric point

PP purine and pyrimidine bases

R¢ retention index for paper chromatography

RI refractive index

S solubility

SR specific rotation

QSAR guantitative structure—activity relationships

QSPR guantitative structure—property relation-
ships

uwc unfrozen water content

\Y side-chain molecular volume
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